Подключение статора электродвигателя однофазного компрессора. Торможение электрического двигателя постоянного тока. Видео работы электромотора

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры. Индуктор, состоящий из добавочных и главных полюсов, и станины, предназначен для создания магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к рабочей обмотке, образуют магнитную систему. Коллектор – это насаженный на вал двигателя цилиндр, собранный из изолированных друг от друга медных пластин. К его выступам припаиваются концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря происходит изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности щеток распределяет неравномерно ток, что приводит к искрению.


Частота вращения – одна из важнейших его характеристик. Ее регулировать можно тремя способами: изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах.

Торможение электрического двигателя постоянного тока

Для торможения электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На якорь обычно подается полное напряжение, а на обмотку - ток, регулировать который можно реостатом или напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся и с независимым возбуждением (от отдельного источника).

Схема для подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания.

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах).

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются - со смешанным возбуждением. Их схема представлена ниже.

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания обмотки возбуждения и якоря включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  • Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления СИФУ.
  • Регулятора
  • Защиты.

Где купить электродвигатель

Многие компании с мировыми именами выпускают сегодня электродвигатель постоянного тока 220 В. Купить его можно в интернет - магазинах, менеджеры которых предоставят исчерпывающую онлайн информацию, касающуюся выбранной модели. Большой выбор моделей таких двигателей на сайте http://ru.aliexpress.com/w/wholesale-brushless-dc-motor.html , в каталоге которого можно ознакомиться со стоимостью моделей, их описанием и пр. Если даже в каталоге нет интересующего двигателя, можно заказать его доставку.

Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения коллекторного двигателя переменного тока, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.

Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.

  • Упрощенная схема подключения
  • Управление работой двигателя
  • Преимущества и недостатки
  • Типичные неисправности

Особенности конструкции и принцип действия

По сути, коллекторный двигатель переменного тока представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины переменного тока подключаются последовательно для оптимизации работы в бытовой сети 220в.

Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.

В целом принцип работы коллекторного мотора переменного тока можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.

Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.

Упрощенная схема подключения

Типовая схема подключения коллекторного электродвигателя переменного тока может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.


Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.


В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора;
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
  • в результате ротор вращается равномерно при любых нагрузках;
  • реверс электродвигателя осуществляется с помощью реле R1 и R


Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Преимущества и недостатки

К неоспоримым достоинствам таких машин следует отнести:

  • компактные габариты;
  • увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
  • быстрота и независимость от частоты сети;
  • мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.
  • снижение долговечности механизма;
  • искрение между и коллектором и щетками;
  • повышенный уровень шумов;
  • большое количество элементов коллектора.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Благодаря своим компактным размерам, коллекторный двигатель получил широкое распространение в конструкциях ручного электроинструмента. Он успешно применяется взамен конденсаторного однофазного асинхронного . Массовое применение коллекторных двигателей обусловлено их высокой мощностью, простотой в управлении и обслуживании. Независимо от внешних различий и типов креплений, все они имеют одинаковый принцип действия.

Устройство и принцип работы

Прежде всего, это однофазный электродвигатель, где осуществляется последовательное возбуждение обмоток. Для его работы может использоваться переменный или постоянный ток. По этой причине, коллекторный электродвигатель считается универсальным.

Большинство таких электродвигателей имеют в своей конструкции основные элементы в виде статора вместе с обмоткой возбуждения, а также ротора и двух щеток в качестве скользящего контакта. Большая роль во всей конструкции отводится тахогенератору. Его магнитный ротор закрепляется в торце роторного вала, а фиксация катушки осуществляется с помощью стопорного кольца или крышки.


Все конструктивные элементы электродвигателя объединены в общей конструкции. Их соединяют две алюминиевые крышки, непосредственно образующие корпус двигателя. Для вывода контактов, присутствующих во всех элементах используется клеммная колодка, позволяющая легко включать их в общую электрическую схему. Для работы ременной передачи на роторный вал запрессовывается шкив.

Подключение и управление

В основе работы данного вида двигателей лежат взаимодействующие поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.


Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.

Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет , подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.

1. Применение коллекторных двигателей в стиральных машинах Коллекторные двигатели получили широкое применение не только в электроинструменте (дрели, шуруповёрты, болгарки и т.д), мелких бытовых приборах (миксеры, блендеры, соковыжималки и т.п), но и в стиральных машинах в качестве двигателя привода барабана. Коллекторными двигателями оснащено большинство (примерно 85%) всех бытовых стиральных машин. Эти двигатели применялись уже во многих стиральных машинах ещё с середины 90-х годов и со временем полностью вытеснили .

Коллекторные моторы более компактные, мощные и простые в управлении. Этим и объясняется их столь массовое применение. В стиральных машинах применяются коллекторные двигатели таких марок производителей как: INDESCO, WELLING, C.E.S.E.T., SELNI, SOLE, FHP, ACC . Внешне они немного отличаются друг от друга, могут иметь разную мощность, тип крепления, но принцип работы их совершенно одинаковый.

2. Устройство коллекторного двигателя для стиральной машины


1. Статор
2. Коллектор ротора
3. Щётка (применяются всегда две щётки,
вторую на рисунке не видно)
4. Магнитный ротор тахогенератора
5. Катушка (обмотка) тахогенератора
6. Стопорная крышка тахогенератора
7. Клеммная колодка двигателя
8. Шкив
9. Алюминиевый корпус

Рис.2

Коллекторный двигатель - это однофазный двигатель с последовательным возбуждением обмоток, предназначенный для работы от сети переменного или постоянного тока. Поэтому его называют ещё универсальный коллекторный двигатель (УКД).

Большинство коллекторных двигателей применяемых в стиральных машинах имеют конструкцию и внешний вид представленный на (рис.2)
Данный двигатель имеет ряд таких основных частей как: статор (с обмоткой возбуждения), ротор, щетка (скользящий контакт, всегда применяются две щётки), тахогенератор (магнитный ротор которого крепится к торцевой части вала ротора, а катушка тахогенератора фиксируется стопорной крышкой или кольцом). Все составные части скрепляются в единую конструкцию двумя алюминиевыми крышками, которые образуют корпус двигателя. На клеммную колодку выводятся контакты обмоток статора, щёток, тахогенератора необходимые для подключения к электрической схеме. На вал ротора запрессован шкив, через который посредством ременной передачи приводится в движение барабан стиральной машины.

Чтобы в дальнейшем лучше понять как работает коллекторный двигатель, давайте рассмотрим устройство каждого из его основных узлов.

2.1 Ротор (якорь)


Рис.3
Ротор (якорь) - вращающаяся (подвижная) часть двигателя (Рис.3) . На стальной вал устанавливается сердечник, который для уменьшения вихревых токов изготавливают из наборных пластин электротехнической стали. В пазы сердечника укладываются одинаковые ветви обмотки, выводы которых прикреплены к контактным медным пластинам (ламелям), образующие коллектор ротора. На коллекторе ротора в среднем может быть 36 ламелей располагающихся на изоляторе и разделённые между собой зазором.
Для обеспечения скольжения ротора, на его вал запрессовываются подшипники, опорами которых служат крышки корпуса двигателя. Так же, на вал ротора запрессован шкив с проточенными канавками для ремня, а на противоположной торцевой стороне вала есть отверстие с резьбой в которое прикручивается магнитный ротор тахогенератора.

2.2 Статор

Статор - неподвижная часть двигателя (Рис.4) . Для уменьшения вихревых токов, сердечник статора выполнен из наборных пластин электротехнической стали образующих каркас, на котором уложены две равные секции обмотки соединённые последовательно. У статора почти всегда есть только два вывода обеих секций обмотки. Но в некоторых двигателях применяется так называемое секционирование обмотки статора и дополнительно имеется третий вывод между секциями. Обычно это делается из-за того, что при работе двигателя на постоянном токе, индуктивное сопротивление обмоток оказывает меньшее сопротивление постоянному току и ток в обмотках выше, поэтому задействуются обе секции обмотки, а при работе на переменном токе включается лишь одна секция, так как переменному току индуктивное сопротивление обмотки оказывает большее сопротивление и ток в обмотке меньше. В универсальных коллекторных двигателях стиральных машин применяется тот же принцип, только секционирование обмотки статора необходимо для увеличения количества оборотов вращения ротора двигателя. При достижении определённой скорости вращения ротора, электрическая схема двигателя коммутируется таким образом, чтобы включалась одна секция обмотки статора. В результате индуктивное сопротивление снижается и двигатель набирает ещё большие обороты. Это необходимо на стадии режима отжима (центрифугирования) в стиральной машине. Средний вывод секций обмотки статора применяется не во всех коллекторных двигателях.
Рис.4 Статор коллекторного двигателя (вид с торца)

Для защиты двигателя от перегрева и токовых перегрузок, последовательно через обмотку статора включают тепловую защиту с самовосстанавливающимися биметаллическими контактами (на рисунке тепловая защита не показана). Иногда контакты тепловой защиты выводят на клеммную колодку двигателя.


2.3 Щётка

Рис.5

Щётка - это скользящий контакт, является звеном электрической цепи обеспечивающим электрическое соединение цепи ротора с цепью статора. Щётка крепится на корпусе двигателя и под определённым углом примыкает к ламелям коллектора. Применяется всегда как минимум пара щёток, которая образует так называемый щёточно-коллекторный узел.
Рабочая часть щётки - графитовый брусок с низким удельным электрическим сопротивлением и низким коэффициентом трения. Графитовый брусок имеет гибкий медный или стальной жгутик с припаянной контактной клеммой. Для прижима бруска к коллектору применяется пружинка. Вся конструкция заключена в изолятор и крепится к корпусу двигателя. В процессе работы двигателя, щётки из-за трения о коллектор стачиваются, поэтому они считаются расходным материалом.

(от др.-греч. τάχος - быстрота, скорость и генератор) - измерительный генератор постоянного или переменного тока, предназначенный для преобразования мгновенного значения частоты (угловой скорости) вращения вала в пропорциональный электрический сигнал. Тахогенератор предназначен для контроля скорости вращения ротора коллекторного двигателя. Ротор тахогенератора крепится напрямую к ротору двигателя и при вращении в обмотке катушки тахогенератора по закону взаимоиндукции наводится пропорциональная электродвижущая сила (ЭДС). Значение переменного напряжения, считывается с выводов катушки и обрабатывается электронной схемой, а последняя в конечном итоге задаёт и контролирует необходимую, постоянную скорость вращения ротора двигателя.
Такой же принцип работы и конструкцию имеют тахогенераторы применяемые в однофазных и трёхфазных асинхронных двигателях стиральных машин.

Рис.6

В коллекторных двигателях некоторых моделей стиральных машин марки Bosch (Бош) и Siemens (Сименс) вместо тахогенератора применяется датчик Холла . Это очень компактный и недорогой полупроводниковый прибор, который устанавливается на неподвижной части двигателя и взаимодействует с магнитным полем кругового магнита установленным на валу ротора непосредственно рядом с коллектором. У датчика Холла три вывода, сигналы с которого так же считываются и обрабатываются электронной схемой (подробно принцип работы датчика Холла в данной статье мы рассматривать не будем).

Как и в любом электродвигателе, принцип работы коллекторного двигателя основан на взаимодействии магнитных полей статора и ротора, через которые проходит электрический ток. Коллекторный двигатель стиральной машины имеет последовательную схему подключения обмоток. В этом легко убедится рассмотрев его развёрнутую схему подключения к электрической сети (Рис.7) .

У коллекторных двигателей стиральных машин, на контактной колодке может быть от 6 до 10 задействованных контактов. На рисунке представлены все максимальные 10 контактов и всевозможные варианты подключения узлов двигателя.

Зная устройство, принцип работы и стандартную схему подключения коллекторного двигателя, без труда можно запустить любой двигатель напрямую от электросети без применения электронной схемы управления и для этого не надо запоминать особенности расположения выводов обмоток на клеммной колодке каждой марки двигателя. Для этого, достаточно всего лишь определить выводы обмоток статора и щёток и подключить их согласно схеме на приведённом ниже рисунке.

Порядок расположения контактов клеммной колодки коллекторного двигателя стиральной машины выбран произвольно.



Рис.7

На схеме, оранжевыми стрелочками условно показано направление тока по проводникам и обмоткам двигателя. От фазы (L) ток идёт через одну из щёток на коллектор, проходит по виткам обмотки ротора и выходит через другую щётку и через перемычку ток последовательно проходит по обмоткам обеих секций статора доходя до нейтрали (N).

Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для того, чтобы двигатель начал вращаться в другую сторону, необходимо лишь изменить последовательность коммутации обмоток.
Пунктирной линией обозначены элементы и выводы, которые задействованы не во всех двигателях. Например датчик Холла, выводы термозащиты и вывод половины обмотки статора. При запуске коллекторного двигателя напрямую, подключаются только обмотки статора и ротора (через щётки).

Внимание! Представленная схема подключения коллекторного двигателя напрямую, не имеет средств электрической защиты от короткого замыкания и устройств ограничивающих ток. При таком подключении от бытовой сети, двигатель развивает полную мощность, поэтому не следует допускать длительного прямого включения.

4. Управление коллекторным двигателем в стиральной машине

Принцип действия электронных схем, в которых используется симистор, основан на двухполупериодном фазовом управлении. На графике (рис.9) показано как изменяется величина питающего мотор напряжения в зависимости от поступающих на управляющий электрод симистора импульсов с микроконтроллера.




Рис.9 Изменение величины питающего напряжения в зависимости от фазы поступающих импульсов управления

Таким образом можно отметить,что частота вращения ротора двигателя напрямую зависит от напряжения прикладываемого к обмоткам двигателя.

Ниже, на (Рис.10) представлены фрагменты условной электрической схемы подключения коллекторного двигателя с тахогенератором к электронному блоку управления (EC) .
Общий принцип схемы управления коллекторного двигателя таков. Управляющий сигнал с электронной схемы поступает на затвор симистора (TY) ,тем самым открывая его и по обмоткам двигателя начинает протекать ток,что приводит к вращению ротора (M) двигателя. Вместе с тем, тахогенератор (P) передаёт мгновенное значение частоты вращения вала ротора в пропорциональный электрический сигнал. По сигналам с тахогенератора создаётся обратная связь с сигналами управляющих импульсов поступаемых на затвор симистора. Таким образом обеспечивается равномерная работа и частота вращения ротора двигателя при любых режимах нагрузки, вследствие чего барабан в стиральных машинах вращается равномерно. Для осуществления реверсивного вращения двигателя применяются специальные реле R1 и R2 ,коммутирующие обмотки двигателя.
Рис.10 Изменение направления вращения двигателя

В некоторых стиральных машинах, коллекторный двигатель работает на постоянном токе. Для этого, в схеме управления, после симистора, устанавливают выпрямитель переменного тока построенный на диодах ("диодный мост"). Работа коллекторного двигателя на постоянном токе увеличивает его КПД и максимальный крутящий момент.

5. Достоинства и недостатки универсальных коллекторных двигателей

К достоинствам можно отнести: компактные размеры, большой пусковой момент, быстроходность и отсутствие привязки к частоте сети, возможность плавного регулирования оборотов (момента) в очень широком диапазоне — от ноля до номинального значения — изменением питающего напряжения, возможность применения работы как на постоянном,так и на переменном токе.
Недостатки - наличие коллекторно-щёточного узла и в связи с этим: относительно малая надёжность (срок службы), искрение возникающее между щётками и коллектором из-за коммутации, высокий уровень шума, большое число деталей коллектора.

6. Неисправности коллекторных двигателей

Самая уязвимая часть двигателя - коллекторно-щёточный узел. Даже в исправном двигателе, между щётками и коллектором происходит искрение, которое довольно сильно нагревает его ламели. При износе щёток до предела и вследствие их плохого прижима к коллектору, искрение порой достигает кульминационного момента представляющего электрическую дугу. В этом случае ламели коллектора сильно перегреваются и иногда отслаиваются от изолятора, образуя неровность,после чего,даже заменив изношенные щётки, двигатель будет работать с сильным искрением,что приведёт его к выходу из строя.

Иногда происходит межвитковое замыкание обмотки ротора или статора (значительно реже), что так же проявляется в сильном искрении коллекторно-щёточного узла (из-за повышенного тока) или ослаблении магнитного поля двигателя, при котором ротор двигателя не развивает полноценный крутящий момент.
Как мы и говорили выше, щётки в коллекторных двигателях при трении о коллектор со временем стачиваются. Поэтому большая часть всех работ по ремонту двигателей сводится к замене щёток.

Стоит отметить,что надёжность коллекторного двигателя во многом зависит от того, насколько качественно и грамотно производители подходят к технологическому процессу его изготовления и сборки.

Материал подготовлен сервисной службой "Аквалюкс"

Возникла необходимость подключить универсальный коллекторный электродвигатель. На первый взгляд никаких проблем нет. Двигатель рабочий, ранее стоял в соответствующем устройстве и выполнял предназначенную ему функцию, то есть уже был подключён. Но дело в том, что использовать его решил в совершенно ином по своим функциям устройстве. Изменились условия, возможности эксплуатации и требования, как к его работе, так и к сроку службы. Ведь механизм, в котором предполагалось вновь задействовать электродвигатель, должен будет быть собран именно под него. Что делать с существующей обвязкой? Можно и главное нужно ли в ней, что-то менять? В данном конкретном случае это электродвигатель от электробритвы.

Имеющаяся обвязка состоит из конденсаторов и дросселей предназначенных выполнять исключительно функции помехоподавляющего фильтра.


Непосредственно на работу двигателя они ни как не влияют. Известно, что универсальный коллекторный электродвигатель одинаково хорошо работает и на постоянном, и на переменном токе. Соответственно, не мудрствуя лукаво, при имеющимся сопротивлении секций обмоток статора (более 800 Ом) плюс сопротивление якоря (360 Ом), подключение можно сделать по такой схеме:


Что и было успешно опробовано.


Однако на постоянном токе чуточку лучше. Во первых КПД двигателя при переменном токе меньше, во вторых меньше срок службы щёток, коллектора и всей машины. Схема подключения будет такой.


Был опробован и этот вариант схемы.


Искрение щёток коллектора стало заметно меньше. Совсем уж решил на этом и остановиться, но тут посоветовали, что при питании данного электродвигателя постоянным током следует добавить, после диодного моста, конденсатор.


Ёмкость конденсатора первоначально посчитал по, показавшейся подходящей для данного случая, формуле. При подключении конденсатора с расчетной ёмкостью в 200 mkf движок взревел как небольшая электродрель, что заставило уменьшать ёмкость. Формулой для расчета, не оправдавшей себя, «делиться» смысла не вижу.


Остановился на конденсаторе 33mkf х 250V и диодном мосте из диодов 1N4007 (как более компактном). Работой электродвигателя доволен.

Видео работы электромотора

Ничего необычного, но действительно лучше увидеть, чем услышать (в данном случае прочитать) как он там «гудит», как он там «искрит». Желаю удачных экспериментов, Babay.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Значение слова поэма в словаре литературоведческих терминов Значение слова поэма в словаре литературоведческих терминов Моя бабушка. Мой дедушка. Сочинение про бабушку для школьников Написать короткий рассказ о бабушке Моя бабушка. Мой дедушка. Сочинение про бабушку для школьников Написать короткий рассказ о бабушке Топик: Мои летние каникулы — My summer vacation Топик: Мои летние каникулы — My summer vacation