Найти пробой кабеля в земле. Повреждения кабельных линий, причины, классификация, методы поиска повреждений

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Страница 4 из 5

Несмотря на периодический осмотр кабельных трасс и проведение профилактических испытаний, при эксплуатации имеют место повреждения (случайные отказы) КЛ. Как правило, это пробой изоляции, реже - разрыв фаз.

Поврежденный кабель отсоединяется с обоих концов от оборудования и с помощью мегаомметра определяется характер повреждения: измеряется сопротивление изоляции между каждой фазой и заземленной металлической оболочкой и между каждой парой фаз. Измерения проводят с одного конца кабеля. Фазные жилы другого конца кабеля разомкнуты (для определения замыканий) или замкнуты и заземлены (для определения обрывов).

Результаты измерений могут не выявить характер повреждения, поскольку переходное сопротивление в месте повреждения может быть достаточно высоким, в частности, из-за затекания места пробоя изоляции маслоканифольным составом (заплывающий пробой) в кабелях с бумажной пропитанной изоляцией.

Для снижения переходного сопротивления изоляция кабеля в месте повреждения прожигается. Для этого на кабель подается напряжение, достаточное для пробоя изоляции в месте повреждения. После некоторого времени повторения пробоев переходное сопротивление в месте повреждения уменьшается, разрядное напряжение снижается, а ток разряда увеличивается. Изоляция прожигается этим током, переходное сопротивление в месте повреждения уменьшается.

После определения характера повреждения выбирается способ и аппаратура для определения места повреждения кабеля.

По точности определения места повреждения различают относительные и абсолютные методы. Относительные методы имеют определенную погрешность и позволяют определить лишь зону повреждения. Это импульсный, петлевой и емкостной методы.

Точное место повреждения позволяют найти абсолютные методы такие, как индукционный и акустический.

Импульсным методом определяется зона однофазного или многофазного замыкания, зона обрыва любого количества фазных жил.
В поврежденную линию посылается эталонный электрический импульс. По экрану измерительного прибора, проградуированному в мкс, измеряется интервал времени tx между моментом подачи импульса и моментом прихода импульса, отраженного от места повреждения (рис. 3).

Скорость распространения электромагнитных волн в силовых кабелях практически не зависит от сечения и материала жил и составляет 160+3 м/мкс. Расстояние до места повреждения вычисляется как Iх= 80tх, м.

Для случая, приведенного на рис. 8.3, зона повреждения находится на расстоянииIх= 80 * 3,5 = 280 м от места измерения.

Рис. 3. Экран прибора при определении зоны повреждения кабеля импульсным методом: а - при замыкании; б - при обрыве

По знаку отраженного импульса судят о характере повреждения. Если посланный и отраженный импульс разного знака - повреждение типа замыкание (рис. 3,а), если одного знака - повреждение типа обрыв (рис. 3,б).

Петлевой метод применяется для определения зоны однофазных и двухфазных замыканий на землю. Этот метод основан на измерении омического сопротивления жил кабеля до места повреждения.

На одном конце кабеля замыкаются нормальная и поврежденная жилы (образуется петля). Измерения проводятся с другого конца кабеля (см. рис. 4). Для измерения сопротивлений R .2 и R 4 может использоваться, например, мост постоянного тока.

Рис. 4. Схема определение зоны повреждения петлевым методом

В одну диагональ моста включается источник постоянного напряжения - U , в другую - измерительный прибор, например милливольтметр mV . Регулируемыми сопротивлениями R 1 и R 3, достигается равновесие моста - нулевое показание милливольтметра.

Известно, что равновесие моста будет достигаться при выполнении соотношения

где R2 - сопротивление нормальной жилы и участка поврежденной жилы от конца кабеля до места повреждения;

R4 - сопротивление участка поврежденной жилы от начала кабеля до места повреждения.

Поскольку сопротивление жилы кабеля пропорционально его длине, зона повреждения после достижения равновесия моста определяется несложными вычислениями

где / - длина кабеля.

Емкостной метод позволяет определить зону обрыва фазных жил кабеля. Метод базируется на измерении емкости между каждой жилой и заземленной металлической оболочкой кабеля.

Пусть измеренная емкость оборванной жилы составляет Сх, а измеренная емкость целой жилы - С. Расстояние до места обрыва составляет

При обрыве трех фазных жил емкость кабеля рассчитывается по известному выражению

где b 0 - удельная емкостная проводимость кабеля, определяемая по справочным данным.

Индукционный метод позволяет определить место многофазных замыканий в кабеле после успешного прожига изоляции в месте повреждения. Метод основан на улавливании магнитного поля, создаваемого вокруг кабеля протекающим по нему током. Улавливание поля производится с помощью специальной поисковой катушки, имеющей магнитный сердечник для концентрации поля.

По двум поврежденным жилам кабеля пропускается ток высокой частоты (800... 1000 Гц) от звукового генератора G (рис. 5). Вокруг кабеля образуется магнитное поле высокой частоты. Поместив в это поле поисковую катушку, соединенную через усилитель с наушниками, можно прослушивать звуковой сигнал. Обслуживающий персонал, продвигаясь по трассе КЛ, прослушивает этот звуковой сигнал.


Рис. 5. Иллюстрация индукционного метода отыскания повреждения

Слышимость сигнала вдоль кабельной линии будет периодически изменяться от max до min. Это объясняется спиральным повивом жил кабеля. Преобладание над поверхностью земли магнитного поля одной жилы периодически меняется на преобладание противоположного магнитного поля другой жилы.

В месте короткого замыкания ток от генератора G меняет свое направление, интенсивность магнитного поля и, следовательно, слышимость сигнала в этом месте усиливаются. За местом повреждения звукового сигнала не будет.
Использование тока высокой частоты необходимо для отстройки звукового сигнала от фона промышленной частоты 50 Гц соседних кабелей.

Акустический метод позволяет определить место однофазных и многофазных замыканий в кабеле при заплывающем пробое.

В поврежденную жилу (в поврежденные жилы) периодически подаются импульсы постоянного напряжения, например, от накопительного конденсатора. В месте повреждения возникают разряды, вызывающие акустический шум. Уровень этого шума прослушивается с поверхности земли, например, с помощью стетоскопа или прибора с пьезодатчиком-преобразователем механических колебаний в электрические.

При практическом поиске мест повреждения КЛ используется сочетание относительных и абсолютных методов. С помощью относительного метода определяется зона повреждения, а затем в этой зоне отыскивается место повреждения абсолютным методом.

Даже после тщательного осмотра кабельных линий и успешных профилактических испытаний при работе кабельной линии могут возникнуть неполадки: пробой изоляционного слоя, разрыв фазы и другие неприятные события. Причины могут быть разные:

  • заводские недостатки конструкции;
  • несоблюдение технологического процесса;
  • неаккуратный монтаж.

Хотя линия лежит глубоко под землей и имеет дополнительную защиту, отыскание места повреждения кабеля обязательно должно проводиться для того, чтобы обезопасить систему от крупной поломки, повреждению кабельных линий и короткого замыкания. Чтобы найти дефекты и слабые места в его изоляции, соединительных узлах и других местах прокладки кабеля, его подвергают различным нагрузкам и по ряду методик определяют точное место повреждения кабеля.

Требования к поиску дефектов кабельной линии

Поиск повреждений кабельных линий должен проводиться с выполнением условий:

  • Погрешность не должна превышать установленный параметр. Для этого необходимо учитывать все нюансы земляных работ.
  • Существует ограничение по времени на выполнение работ по поиску повреждения кабеля: не более нескольких часов.
  • Обязательно соблюдать технику безопасности для работающего персонала.

Если поиски места повреждения затянутся, то в место дефекта может попасть влага. В этом случае придётся заменить весь увлажнённый участок кабельной линии, а это — несколько десятков метров! Подобный ход дела увеличит и объем земельных работ, и смету на их проведение. В то же время оперативное отыскание места повреждения подразумевает замену участка линии не более 5 м в длину.

Этапы поиска разрыва кабеля под землей

Поиск обрыва кабеля в земле проводится в 2 этапа:

  • при помощи специальных приборов находят участок повреждения;
  • уточняют конкретную область разрыва.

Для начала при помощи мегаомметра необходимо замерить сопротивление изоляции в течение одной минуты. Если показатель ниже нормы, то прибегают к испытаниям кабельных линий повышенным напряжением.

Выбор метода нахождения места повреждения КЛ зависит от характера дефекта и от величины переходного сопротивления. Трёхфазная линия КЛ подвержена таким видам повреждений:

  • замыкание на землю одной, двух или всех трёх жил;
  • соединение проводов друг с другом;
  • обрыв жил без заземления;
  • заплывающий пробой, проявляющийся в форме короткого замыкания.

Для снижения переходного сопротивления могут использоваться генератор высокой частоты или кенотрон. Но процесс этот в каждом случае может проходить по-разному: в большинстве случаев уже через 20 секунд сопротивление снижается до десятков Ом. В муфтах этот процесс может длиться несколько часов.

Когда зона дефекта обнаружена, переходят к поиску конкретного места обрыва. Для увеличения эффективности пользуются сразу несколькими методами поиска с одного конца кабеля, либо применяют одну методику, но движутся сразу с двух концов одновременно.

Методы поиска повреждения кабеля

Специалисты нашей электролаборатории владеют всеми возможными методами поиска повреждения кабеля в земле. Мы даём гарантию, что обрыв будет найден в кратчайший срок и устранён без вреда для кабельной линии и вашего оборудования. В своей работе мы используем:

  • Импульсный метод.
    Мы подаём специальный зондирующий импульс переменного тока, который отразится от места дефекта. Замерив интервал времени и зная скорость распространения импульса 160м/мкс, мы находим место дефекта.
  • Метод колебательного разряда.
    От кенотронной испытательной установки подаётся напряжение, плавно увеличивающееся до величины пробоя. Период колебаний даёт возможность определить расстояние до точки разрыва.
  • Метод петли — используется «мост» постоянного тока.

Метод петли (схема).

  • Ёмкостный метод — замеряем ёмкость оборванной линии и находим разрыв индукционным, акустическим методом либо методом накладывания рамки.
  • Индукционный метод с использованием приёмочной рамки позволяет установить глубину, на которой заложен поврежденный кабель.
  • Акустический метод основан на прослушивании звуковых колебаний после подачи искрового заряда.
  • Метод накладной рамки позволяет прослушивать сигналы от поля пары токов: в месте повреждения сигнал будет монотонным.

Инженерный центр "ПрофЭнергия" имеет все необходимые инструменты для качественного проведения ремонта кабельных линий, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории "ПрофЭнергия" вы выбираете надежную и качествунную работу своего оборудования!

Виды повреждений кабельных линий. По характеру по­вреждений в трехфазных кабельных линиях различают следую­щие их виды: повреждение изоляции, вызывающее замыкание одной фазы на землю; повреждение изоляции, вызывающее за­мыкание двух или трех фаз на землю либо двух или трех фаз между собой; обрыв одной, двух или трех фаз без заземления или с заземлением как оборванных, так и необорванных жил; заплы­вающий пробой изоляции; повреждения линии одновременно в двух или более местах, каждое из которых может относиться к одной из вышеуказанных групп.

Аналогичные виды повреждений могут быть и в четырех-жильных кабельных линиях до 1000 В.

Наиболее распространенным видом повреждения кабельных линий является повреждение изоляции между жилой и металли­ческой оболочкой кабеля или муфты, т.е. однофазное повреж­дение.

Для определения места повреждения необходимо иметь ма­лое переходное сопротивление в месте повреждения кабельной линии. Снижение переходного сопротивления до необходимого уровня осуществляется прожиганием изоляции в месте поврежде­ния кенотронно-газотронной установкой.

При прожигании мест повреждений кабельных линий, про­ложенных в туннелях, коллекторах, подвалах и других помеще­ниях, необходимо выставлять наблюдателей для обнаружения мест повреждений и предотвращения возможности возгорания кабелей.

Перед производством измерений кабельная линия должна быть отсоединена разъединителями от питающего источника, а от линии должны быть отсоединены все электроприемники.

После проведения всех необходимых измерений составляет­ся схема вида повреждения кабельной линии, которая заносится в протокол измерения.

Методы определения мест повреждений кабельных линий. В кабельных линиях определяют сначала зону повреждения, а затем уточняют место повреждения непосредственно на трассе.

Для определения зоны повреждения линии применяют сле­дующие методы: импульсный, колебательного разряда, петли и емкости.

Для определения места повреждения непосредственно на трассе рекомендуется применять следующие методы: индукцион­ный, акустический и метод накладной рамки.

Импульсный метод применяется для определения расстоя­ния до места повреждения в кабельных и воздушных линиях (при однофазных и межфазных замыканиях, а также при обры­вах жил).

Работы производят с помощью приборов ИКЛ-5, Р5-1А, Р5-5, которые посылают в кабель кратковременный импульс пе­ременного тока. Дойдя до места повреждения, импульс тока от­ражается и возвращается обратно. Характер повреждения кабеля (короткое замыкание или обрыв) определяют по изображению, появляющемуся на экране электронно-лучевой трубки. Расстоя­ние до места повреждения можно определить, зная время прохо­ждения импульса и скорость его распространения.

При измерениях приборами ИКЛ-5, Р5-1А погрешность обычно не превышает 1,5 %, а прибором Р5-5 - 0,5 %, что впол­не допустимо. Достоинствами этого метода являются быстрота, наглядность и простота измерений; возможность определения лю­бых видов повреждений, в том числе в разных местах кабеля при условии, что переходное сопротивление не превышает 200 Ом. При этом, как правило, достаточно произвести измерения только на одном конце линии, не производя никаких присоединений на противоположном ее конце, а путем непосредственного измерения расстояний от конца линии до места повреждения кабеля по эк­рану или шкале калиброванной задержки независимо от длины и типа кабельной линии.

Метод колебательного разряда заключается в измерении периода (полупериода) свободных колебаний, возникающих в за­ряженной кабельной линии при пробое изоляции в месте повреж­дения от выпрямительной установки. При пробое изоляции про­исходит разряд в кабеле колебательного характера. Период колебаний Т этого разряда соответствует времени четырехкратно­го пробега волны до места повреждения, поэтому

Т = 2t = 4l x /v ,

где 1 Х - расстояние до места пробоя, м; v - скорость распро­странения волны колебания, равная 160-Ю 3 км/с.

Обычно прибором ЭМКС-58М измеряют только время полу­периода колебания. Тогда l x = t / 2v .

Расстояние до места повреждения фиксируется по шкале прибора, градуированной в километрах.

Метод петли применяют для определения зоны поврежде­ния при одно- и двухфазных замыканиях при наличии одной не­поврежденной жилы или параллельного кабеля с неповрежден­ными жилами.

Метод основан на прин­ципе измерительного моста по­стоянного тока, позволяющего определить отношение сопро­тивлений поврежденной жилы кабеля от места измерения до точки замыкания и обратной петли. Для этого поврежден­ную и неповрежденную жилы кабеля соединяют на одном конце линии перемычкой в форме петли (рис. 10.1). В ре­зультате образуется четырех -плечевой мост: регулируемые сопротивления г\, г 2 и сопро­тивления жил кабеля (повреж­денной и неповрежденной).

При повреждении кабельной линии имеет большое значение быстрота ее ремонта, так как нарушается нормальная схема передачи электроэнергии, снижается надежность электроснабжения потребителей и ухудшаются технико-экономические показатели электрической сети. При прокладке кабеля в земле к указанным причинам необходимости ускоренного ремонта добавляется опасность проникновения влаги в изоляцию кабеля через отверстие в его оболочке и возможность интенсивного засасывания влаги по длине кабеля.

Кабельные работы по ремонту при быстром нахождении повреждения ограничиваются короткой вставкой кабеля с монтажом двух муфт, а в благоприятных случаях - даже одной муфты. В противном случае приходится с обоих концов от места повреждения кабеля вырезать по несколько метров, а иногда по несколько десятков метров увлажненного кабеля. Это значительно усложняет и удорожает ремонт кабельной линии.

Быстрое и точное определение места повреждения в кабельных линиях осуществляется передвижными измерительными лабораториями, располагаемыми в крытом фургоне автомашины. Внутри лаборатории монтируют прожигательную установку для уменьшения переходного сопротивления изоляции в поврежденном месте кабельной линии и последующего определения места повреждения специальными измерительными приборами, в частности:
– импульсным прибором Р5-8 или Р5-9 (измеритель неоднородностей кабелей) для определения характера повреждения и расстояния до места повреждения с диапазоном измерения от 1 до 10000 м;
– прибором Щ-4120 (или ЭМКС-58) комплектно с присоединительным устройством - для определения расстояния до места повреждения кабельной линии при заплывающих пробоях с диапазоном измерения от 40 до 20 000 м методом колебательного разряда;
– кабельным мостиком УКМ или другого типа - для определения места повреждения методом петли или емкостным методом;
– устройством для определения места повреждения акустическим методом непосредственно на трассе при условии, что в поврежденном месте может быть искусственно создан электрический разряд, прослушиваемый с поверхности земли;
– оборудованием и аппаратурой для определения места повреждения индукционным методом непосредственно на трассе.

Повреждения в кабельных линиях по их характеру могут быть подразделены на следующие виды:
повреждения изоляции, вызывающие замыкание одной жилы на землю;
повреждения изоляции, вызывающие замыкание двух или трех жил между собой;
обрыв одной, двух или трех жил без заземления или с заземлением как оборванных, так и необорванных жил;
заплывающий пробой изоляции;
повреждения линии одновременно в двух или более местах, каждое из которых может относиться к одной из вышеуказанных групп.

В кабельных линиях с отдельно освинцованными жилами ОСБ, двух- и трехжильные повреждения изоляции происходят очень редко. Наиболее распространенным видом повреждения силовых кабельных линий является повреждение изоляции между жилой и металлической оболочкой кабеля или муфты, т. е. одножильное повреждение.

При повреждении кабельной линии прежде всего необходимо определить характер повреждения. В большинстве случаев для этого бывает достаточно с помощью мегомметра определить с обоих концов линии: сопротивления изоляции каждой токоведущей жилы кабельной линии по отношению к земле; сопротивления изоляции между каждой парой токоведущих жил. Если мегомметром не удается определить характер повреждения изоляции, что иногда бывает, когда кабельная линия повреждена не во время работы, а при испытании, то характер повреждения определяют дополнительными повторными испытаниями изоляции токоведущих жил по отношению к металлической оболочке кабеля и между собой. В настоящее время характер повреждения определяют также импульсными приборами (ИКЛ-5, Р5-1А, Р5-5, Р5-8 и Р5-9).

После того, как произведены все необходимые измерения, составляют схему вида повреждения кабельной линии и выбирают метод, который для данного вида повреждения может дать наилучший результат.

Рис. 199. Принципиальные схемы прожигания на переменном токе:
а - генератор высокой частоты, б-резонансный трансформатор; 1 - электродвигатель (Р=5 кВА; U=220 В; n= 2960 об/мин), 2 - генератор повышенной частоты ГИС-2 (Р=3 кВА; I = 15 А; U=220 В; F=1000 Гц), 3 - положение переключателя для последовательного соединения обмоток, 4 - контакты для параллельного соединения обмоток (I-30 А; U-110 В), 5 - поврежденный кабель, 6 - место повреждения, 7 - первичная обмотка, 8 и 9 - вторичная высоковольтная обмотка, секцированная на две части с зажимом I-III и II-IV и с возможностью подключения двух секций или одной (показано пунктиром)

Кабельные работы

Во многих случаях для определения места повреждения необходимо, чтобы сопротивление в месте повреждения кабельной линии между жилами или между жилой и оболочкой было как можно меньше. Снижение этого переходного сопротивления до необходимого предела осуществляют чередованием ступеней прожигания изоляции в месте повреждения: кенотроном или полупроводниковыми выпрямителями, размещаемыми в баке с маслом, газотронами и параллельной их работой с кенотроном или полупроводниками и на стадии окончательного дожигания генератором высокой частоты (рис. 199,а). В стадии внедрения находится прожигание на переменном токе резонансным трансформатором (рис. 199,6). В новых установках прожигания с питанием от выпрямительной установки находят применение тиристоры (четырехслойные полупроводники) с большим эффективным током


Рис. 200. Принципиальная схема прожигательной установки на постоянном токе от выпрямителей:
1 - повышающий трансформатор (Р=6 кВА; U=220/42 500 В), 2 - полупроводниковый выпрямитель (300 последовательно соединенных диодов Д226), размещенный в масляном баке трансформатора 1, 3 - регулировочный трансформатор (Р=7 кВА, U=220/0-250 В) с двумя независимыми выводами со скользящими контактами, с заземлением середины вторичной обмотки для исключения высокочастотных перенапряжений при пробое кабеля, 4 - повышающий трансформатор (Р=6 кВА, U=0,22/5 и 10 кВ), 5 - газотроны ВГ-237, соединенные по схеме двухполупериодного выпрямления, 6 - трансформаторы накала газотронов, 7 - регулировочный автотрансформатор (Р = 1,5 кВА, У-220/0-250 В), 8- переключатель для параллельного соединения двух секций высоковольтной обмотки повышающего трансформатора, 9 - разъединитель для параллельной работы полупроводникового выпрямителя с газотронами

Прожигательную установку для применения в сетевых условиях монтируют в крытом кузове автомашины по сравнительно сложной электрической схеме, в которую входят: щиток для приема электроэнергии от постороннего источника промышленной частоты, трансформаторы, повышающие напряжение, регулировочное выпрямительное устройство (два газотрона и полупроводниковый выпрямитель) измерительные приборы и пр. (рис. 200).

Монтаж прожигательной установки выполняют в развернутом виде, чтобы можно было легко проконтролировать состояние и осуществить ремонт любого элемента схемы.

Полупроводниковый выпрямитель 2 позволяет повысить напряжение до 60 кВ и получить ток для прожигания до 0,5 А.

Газотрон 5 позволяет иметь напряжение до 10 кВ и ток 2,5 А, а при включенных переключателях 8 ток 5А при напряжении 5 кВ.

Двигатель-генератор высокой частоты обычно располагают в отсеке низшего напряжения передвижной прожигательной установки, а его использование для прожигания производится лишь при наличии устойчивого проводящего мостика. При параллельном соединении обмоток генератора ток прожигания составляет 30 А при напряжении НОВ.

Резонансный трансформатор (рис. 199,6) размещают в отсеке высшего напряжения автомашины. Первичную обмотку 7 присоединяют к сети 220 В через контактор с дугогасительными камерами.

Резонансный контур в этом аппарате создается на промышленной частоте питающей сети, возбуждаемой вследствие магнитной связи обмоток 8 и 9 высшего напряжения с обмоткой 7 низшего напряжения. Вследствие применения разомкнутого сердечника магнитная связь между обмотками высшего и низшего напряжения слабая. В режиме прожигания нормально ток изменяется от 20 до 50 А.

Процесс прожигания протекает по-разному в зависимости от характера повреждения и состояния кабеля и обычно через 15-20 мин сопротивление снижается до нескольких десятков омов. По мере снижения напряжения пробоя необходимо переходить на следующую, более мощную по току ступень прожигания.

При повреждении кабеля с увлажненной изоляцией процесс прожигания проходит более длительно и сопротивление удается снизить только до 2000-3000 Ом.

Процесс прожигания места повреждения в муфтах обычно осуществляется длительно, несколько часов, причем сопротивление резко изменяется,1 то снижаясь, то снова возрастая, пока не наступит установившийся режим и сопротивление начнет снижаться. В некоторых случаях в процессе прожигания повреждения в муфте место повреждения заплывает (заплывающий пробой), изоляция восстанавливается до нормальной величины и пробои прекращаются.

При прожигании мест повреждения кабельных линий, проходящих в туннелях, коллекторах, подвалах и других помещениях, необходимо выставлять наблюдателей для обнаружения мест повреждений и предотвращения возможности воспламенения кабелей.

В настоящее время почти во всех случаях повреждений кабельных линий предварительно определяют зону повреждения на линии и после этого различными методами уточняют место повреждения непосредственно на трассе линии. Для определения зоны повреждения линии применяют следующие основные методы: импульсный, колебательного разряда, петли, емкостный. Для нахождения места повреждения непосредственно на трассе линии рекомендуется применять следующие основные методы измерений: акустический, индукционный, метод накладной рамки.


Рис. 201. Измерение импульсным методом:
а - прибор ИКЛ, б - измерение зондирующего и отраженного импульсов на экране прибора ИКЛ при коротком замыкании жил кабеля, в - измерение зондирующего и отраженного импульсов на экране прибора ИКЛ при обрыве жилы в муфте

Импульсный метод (рис. 201) основан на измерения времени между моментом посылки в кабель кратковременного импульса постоянного тока и приходом к месту установки прибора ИКЛ (рис. 201, а) импульса, отраженного от места повреждения. При этом отраженный импульс при коротком замыкании жил кабеля своим острием направлен вниз (рис. 201,6), а при обрыве жил - вверх (рис. 201,в). На экране прибора при измерении видны линии масштабных отметок времени и импульса. Ручкой совмещения импульса (крайняя левая сверху на рис. 201, а) совмещается импульс с началом масштабной отметки и производится отсчет числа отметок от начала импульса до его отражения (на рис. 201,6 и в отрезки а - в = Lх).

Для случая повреждения, показанного на рис. 201,6 получается отметка 2,8, что соответствует расстоянию от места присоединения прибора ИКЛ до места повреждения кабеля:
Lx==vn = 160 X 2,8 = 448 м,
где v = 160 м/мк-с - скорость распространения импульса по кабельной линии, а п - количество масштабных отметок. Прибор Р5-9 в отличие от других моделей этого типа имеет встроенный автономный источник питания.
Метод колебательного разряда (рис. 202) применяется для определения повреждений в кабельных линиях при заплывающих пробоях. Для измерения на поврежденную жилу подается напряжение от кенотронной выпрямительной установки (рис. 202,6).

Рис. 202. Прибор ЭМКС-58 для измерения методом колебательного разряда (а) и схема измерения (б):
1 - сопротивление, 2 - кенотрон, 3 - трансформатор, 4 - прибор ЭМКС-58, 5 - делитель напряжения (антенна), 6-металлическая оболочка кабеля, 7- жилы кабеля

При пробое в кабеле происходит колебательный процесс. Метод основан на измерении периода собственных колебаний Т в момент пробоя электромикросекундомером (рис. 202,а), тогда расстояние до места повреждения Lx = 40 Т, где Т - время четырехкратного пробега волны до места повреждения.

Отсчет расстояния от места присоединения прибора до места заплывающего пробоя производят по шкале приборов, градуированной в километрах на четырех пределах: 0-1, 0-2, 0-5 и 0-10 км.

Метод петли применяется в случаях:
повреждения одной или двух жил при наличии одной здоровой жилы в этом же кабеле;
повреждения трех жил при наличии возможности использования рядом проложенного кабеля;
повреждения трех жил, если величины переходных сопротивлений жил отличаются друг от друга более чем в 100 раз;
если переходное сопротивление поврежденной жилы не превышает 5000 Ом при использовании моста низкого напряжения и при больших переходных сопротивлениях при работе мостом высокого напряжения.

Рис. 203. Мостовые методы измерения:
a - методом петли, 6 - емкостным методом, 1 - жилы кабеля, 2 - перемычка, 3 - место обрыва жилы; Т - телефон, R х- переходное сопротивление оборванной жилы, Сх - емкость поврежденной жилы,
R - регулируемое сопротивление, С - ре-гулируемая емкость, Г - гальванометр

При определении места повреждения кабельной линии методом петли здоровую и поврежденную жилы соединяют на одном конце линии перемычкой сечением не менее жилы кабеля. Питание схемы моста осуществляют от аккумуляторов АКН-10-6, а при больших переходных сопротивлениях в месте повреждения- от сухой батареи БАС-60 или БАС-80. Гальванометр присоединяют непосредственно на конец жил кабеля.

Уравновешивая мост, определяют место повреждения по формуле

где lХ- расстояние от места измерения до места повреждения линии, м; L - длина кабельной линии (для линии, состоящей из кабелей разных сечений, длина приводится к одному эквивалентному сечению, за которое принимается отрезок кабеля наибольшей длины), м; R1 и R2 - сопротивления плеч моста, Ом.

Емкостный метод (р,ис. 203, б) применяется в случае измерения емкости на переменном токе, когда переходное сопротивление «на землю» оборванной жилы кабеля RX = 5000 Ом и более. Регулированием сопротивления R и емкости С обеспечивается отсутствие звука в телефоне. Полученная на мостике величина емкости при отсутствии звука в телефоне должна быть равна измеряемой емкости поврежденной жилы кабеля. Показателем определения места повреждения является сопоставление емкостей поврежденной и здоровой жил.

Акустический метод (рис. 204) применяется в случаях:
заплывающих пробоев в соединительных муфтах;
устойчивых, но не металлических замыканий между одной из жил и оболочкой кабеля.

Метод основан на прослушивании над местом повреждений разрядов от посылаемых импульсов в кабельную линию. В качестве генератора импульсов применяют кенотрон с дополнительным включением в схему высоковольтных конденсаторов и шарового разрядника. Вместо конденсаторов может быть использована емкость неповрежденных жил.


Рис. 204. Принципиальные схемы определения
места повреждения акустическим методом: а - для заплывающих пробоев в муфтах, б - при устойчивом замыкании в месте повреждения, в - с использованием емкости неповрежденных жил; 1 - фазы кабеля, 2 - металлическая оболочка кабеля, 3-поврежденное место на кабельной линии, Р - разрядник, С - зарядная емкость

Для прослушивания разрядов над местом повреждения применяют кабелеискатель - звукоприемник, состоящий из приемной рамки (антенна), усилителя и телефонных трубок.

При применении акустического метода придерживаются такой последовательности выполнения отдельных операций по определению места повреждения в кабельной линии.

Предварительно в зависимости от характера повреждения методами колебательного (разряда, импульсным или петлевым определяют зону повреждения.

Оператор со звукоприемником отправляется в зону повреждения, при этом на поврежденную жилу кабельной линии подаются импульсы с периодичностью около одного импульса в секунду. Идя по трассе в зоне повреждения, оператор ставит приемник звуков на землю и телефон прослушивает разряды. Если разряды не прослушиваются, то звукоприемник переносится вдоль трассы линии.

Над местом повреждения кабельной линии слышимость искровых разрядов наибольшая. Разряды при небольших изоляционных расстояниях в целом месте кабеля могут переходить в металлическое замыкание и в этом случае не прослушиваются над повреждением.

Индукционный метод основан на принципе прослушивания с поверхности земли при помощи кабелеискателя звука, создаваемого электромагнитными колебаниями в результате протекания по жилам кабеля, тока звуковой частоты (800-1000 Гц).

С помощью индукционного метода определяют двух- и трехфазные замыкания устойчивого характера по величине переходного сопротивления в месте повреждения около 10 Ом. Для создания магнитного поля при этих повреждениях собирают схему по рис. 205, а.


Рис. 205. Измерение индукционным методом:
о - схема присоединения генератора, б - работа оператора на трассе кабеля; 1 - однофазный генератор звуковой частоты напряжением 110-220 В, мощность 2 кВт, 2 - кривая слышимости звука, 3 - место повреждения, 4 - силовой кабель, 5 - кабелеискатель; А - амперметр,
В - вольтметр

Место повреждения определяется по изменениям звука в телефоне. Над местом повреждения звуковые сигналы будут усиливаться и за местом повреждения полностью исчезнут. Эти изменения улавливает оператор, идущий вдоль трассы кабельной линии (рис. 205, б).

Определение однофазных повреждений в силовых кабельных линиях индукционным методом является трудно разрешаемой технической задачей. При этих повреждениях ток от генератора звуковой частоты пропускается в отличие от схемы, изображенной на рис. 205, по цепи поврежденная жила - оболочка. При этом в кабельной линии возбуждаются четыре взаимосвязанных между собой переменных магнитных поля: межпроводное, растекания, вихревое и мостика повреждения. Взаимодействие полей искажает характеристику переменного поля в зоне места повреждения против характеристики над местом повреждения. Это отличие лучше всего обнаруживается при измерениях минимальных уровней звука. Успешное определение однофазных повреждений складывается из следующих условий: длительной тренировки персонала; четкого соблюдения специальной методики работ по измерениям; применения специального кабелеискателя звука (со сдвоенной приемной рамкой).
Метод накладной рамки применяется на открыто проложенных кабельных линиях, а в земле - отрытой траншее или специально отрытых шурфах по трассе линии для определения места повреждений на кабелях с отдельно освинцованными жилами. Он может быть использован и на кабелях с поясной изоляцией при пробоях одной жилы на оболочку или нескольких жил с большим переходным сопротивлением.


Рис 206. Схема определения места повреждения
кабельной линии методом накладной рамки: а - общая схема испытания, б - характер изменения интенсивности звука при вращении рамки; 1 - накладные рамки, 2 - телефоны, 3 - место повреждения, 4 - генератор

Для случая использования этого метода при прокладке в земле схема измерения приведена на рис. 206. С конца линии через поврежденную жилу и оболочку кабеля пропускают от генератора ток звуковой частоты. На кабель накладывают рамку, выполненную по форме кабеля в виде стальной обоймы, внутри периметра которой уложена катушка из медной проволоки. Концы катушки выводят из обоймы и присоединяют к телефону. При вращении рамки вокруг кабеля до места повреждения наводимый э. д. с. звук в телефоне дважды достигнет максимума и минимума. За местом повреждения будет прослушиваться монотонное звучание, а усиление и ослабление звука в телефоне будет отсутствовать.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Построение высокоэффективных квазирезонансных источников питания с синхронным выпрямлением на основе контроллеров Renesas HA16163 Построение высокоэффективных квазирезонансных источников питания с синхронным выпрямлением на основе контроллеров Renesas HA16163 Какими электрическими зарядами обладает электрон и нейтрон? Какими электрическими зарядами обладает электрон и нейтрон? Импульсный источник питания для усилителей Импульсный источник питания для усилителей