Диоды и их свойства. P-N-переход и диод. Кремниевый диод и его ВАХ

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Диоды часто именуются «прямыми» и «обратными». С чем это связано? Чем отличается «прямой» диод от «обратного» диода?

Что представляет собой «прямой» диод?

Диод - это полупроводник, имеющий 2 вывода, а именно - анод и катод. Используется он для обработки различными способами электрических сигналов. Например, в целях их выпрямления, стабилизации, преобразования.

Если, с другой стороны, диод имеет обратную смещенность, то есть самое высокое напряжение находится на катоде и самое низкое напряжение на аноде, ток не течет. Катод идентифицируется на корпусе диода посредством кольца или метки, соответствующей перекладине символа. Здесь, например, это 1-й диод. Справа серое кольцо используется для определения положения катода.

Использование в защитном диоде




Поэтому необходимо построить собственный регулируемый источник питания, основанный, например, на входе этого регулируемого источника питания, и у нас будет непрерывный внешний источник питания, обеспечивающий, например, 12 В, все электронные системы сети. Важное значение имеет риск неправильного подключения этого источника питания. Момент невнимания и компоненты поджариваются с ключом работы по распариванию и затратам.

Особенность диода в том, что он пропускает ток только в одну сторону. В обратном направлении - нет. Это возможно благодаря тому, что в структуре диода присутствует 2 типа полупроводниковых областей, различающихся по проводимости. Первая условно соответствует аноду, имеющему положительный заряд, носителями которого являются так называемые дырки. Вторая - это катод, имеющий отрицательный заряд, его носители - электроны.

Последовательный диод на разъеме внешнего источника питания позволяет смягчить этот риск. Если источник питания правильно подключен, диод будет поляризован в прямом направлении и, следовательно, будет пропускать ток. Следует иметь в виду, что напряжение питания после диода на 0, 7 В меньше напряжения внешнего источника питания.

Использование в качестве диода свободного хода

Если источник питания подключен вверх дном, диод будет обратным смещением и предотвратит протекание тока, тем самым защищая компоненты вашей карты. Когда цепь, управляющая потоком тока в индуктивной нагрузке, т.е. любое устройство, содержащее одну или несколько катушек, отключается, ток в индуктивной нагрузке не прекращается немедленно. индукция. Если этот остаточный ток не находит пути для циркуляции, напряжение увеличивается и может разрушать компоненты, подключенные к индуктивной нагрузке или вызывать искры.

Диод может функционировать в двух режимах:

  • открытом;
  • закрытом.

В первом случае через диод хорошо проходит ток. Во втором режиме - с трудом.

Открыть диод можно посредством прямого включения. Для этого нужно подключить к аноду положительный провод от источника тока, а к катоду - отрицательный.

Прямым также может именоваться напряжение диода. Неофициально - и сам полупроводниковый прибор. Таким образом, «прямым» является не он, а подключение к нему или же напряжение. Но для простоты понимания в электрике «прямым» часто именуется и сам диод.

Поэтому диод используется здесь для обеспечения пути к току. На следующей диаграмме мы имеем реле, работающее при напряжении 5 В и простой кнопке. Когда кнопка не нажата, цепь отключается, и ток не течет. Поэтому реле не склеено. Когда кнопка нажата, ток течет через катушку реле, и катушка реле склеена. Диод обратный. Следовательно, через него не течет ток.

Когда кнопка отпускается, путь к земле отключается, но индуктивный эффект катушки реле поддерживает остаточный ток. Диод предлагает путь, и ток течет через катушку. Катушка имеет сопротивление, она рассеивает энергию в виде тепла эффектом Джоуля. Реле срабатывает, как только ток уменьшается ниже определенного значения.

Что представляет собой «обратный» диод?

Закрывается полупроводник посредством, в свою очередь, обратной подачи напряжения. Для этого нужно поменять полярность проводов от источника тока. Как и в случае с прямым диодом, формируется обратное напряжение. «Обратным» же - по аналогии с предыдущим сценарием - именуется и сам диод.

Диод представляет собой двухногий электронный компонент, то есть диполь, особенность которого и главный интерес заключается в том, что он позволяет потоку течь только в одном направлении. Чтобы сделать его очень простым в отношении его полезности, эта особая особенность позволяет, в частности, защитить часть электрической цепи. Но область применения диодов более обширна, а также касается аналоговой, цифровой и электротехнической электроники.

Электрический символ диода на электрической схеме может быть представлен несколькими способами в зависимости от типа диода. Самый простой и наиболее распространенный дисплей выглядит следующим образом. Электрический символ диода. Чтобы легко понять основную характеристику диодов, достаточно создать простую замкнутую цепь, содержащую источник питания, диод и лампу. Если диод расположен в том же направлении, что и ток, лампа включается. Если диод расположен в противоположном направлении, диод предотвратит прохождение тока и, таким образом, обрезает цепь закрыт, чтобы лампа не включалась.

Сравнение

Главное отличие «прямого» диода от «обратного» диода - в способе подачи тока на полупроводник. Если он подается в целях открытия диода, то полупроводник становится «прямым». Если полярность проводов от источника тока меняется - то полупроводник закрывается и становится «обратным».

Рассмотрев, в чем разница между «прямым» диодом и «обратным» диодом, отразим основные выводы в таблице.

Вот и все, вы только что поняли, что самое главное в этом компоненте. Тем не менее, это очень упрощенное и идеальное использование. В частности, разность потенциалов между двумя выводами этого диполя должна превышать пороговое напряжение, чтобы пропускать ток. То есть диод с пороговым напряжением 6 В не будет пропускать ток, если показанное выше напряжение питания замкнутой цепи не превышает 6 В и даже после превышения разности потенциалов этот порог, ток будет постепенно возрастать по мере увеличения напряжения.

Это пороговое напряжение отображается на снимке ниже. Диод, который испускает свет, когда он покрыт электрическим током. Рельеф прямой характеристической кривой и обратного диода Схема подключения: Теоретическое Описание: Диод представляет собой электронный компонент с двумя терминалами, что обеспечивает прохождение электрического тока в одном направлении, в то время как в другом направлении воспрепятствует проходят практически, чтобы предотвратить его. Ток может протекать через диод, если потенциал анод является положительным по отношению к катоду. Когда потенциал анод является отрицательным по отношению к катоду, диод пересечен током очень малой потери. Таким образом, мы можем рассмотреть диод в качестве напряжения чувствительного переключателя, который закрыт, когда «анод является более положительным, чем катод, и открывается, когда» анод является отрицательным по отношению к катоду. В первом случае, при проведении, диод, как говорят, поляризован непосредственно, во втором случае, когда оно выступает против тока, говорят, обратно поляризованным. Ниже приводится небольшая классификация выпрямительных диодов. Диод выпрямитель: Выпрямитель диод любой диод используется таким образом, чтобы иметь обратное пробивное напряжение всегда выше любой обратный сигнал напряжения Его функция заключается в блокировании любого обратного тока проводимости диода Диоды для использования. Общие сведения: Они не требуют оптимизации конкретного электрического параметра. Диоды для переключения: Ожидаемые для работы с сигналами, которые имеют очень быстрое переключение; должен иметь малые значения времени восстановления диодов для малых сигналов: Эти диоды, предусмотренные для малого тока и напряжения пробоя не очень высоки. Диодные выпрямители: при условии, чтобы выпрямить напряжение сети или напряжение значительной амплитуды чередуется; Они предназначены для высоких напряжений и токов. Под ней показано техническое описание. Выполнение измерения и анализа: Прежде всего, мы приступили к установке схемы, показанной выше.

  • Без названия Объект обучающая.
  • Ее терминалы называются соответственно анод и катод.
  • На рынке существуют различные типы.
Электроника и вычислительная техника - буфер на стабилитроне: прямая поляризация; обратного смещения.

И как возникает в нем ток. Сегодня мы продолжим начатую тему и поговорим о принципе работы полупроводниковых диодов .

Диод – это полупроводниковый прибор с одним p-n переходом, имеющий два вывода (анод и катод), и предназначенный для выпрямления, детектирования, стабилизации, модуляции, ограничения и преобразования электрических сигналов.

Электроника и вычислительная техника - отчет о поведении диода путем анализа его характеристической кривой. Электрический символ диода выглядит следующим образом. Для диода имеется прямая характеристика, которая получается путем поляризации диода непосредственно.

Прямая характеристика диода называется кривой, которая выражает ток диодного тока в соответствии с напряжением, приложенным к самому диоду. Ожидается, что лабораторный опыт будет составлен таким образом, чтобы он приобретал руководства и опыт в программах, необходимых для создания и проектирования электронных схем.

По своему функциональному назначению диоды подразделяются на выпрямительные, универсальные, импульсные, СВЧ-диоды, стабилитроны, варикапы, переключающие, туннельные диоды и т.д.

Теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. Но как, и каким образом он это делает, знают и понимают не многие.

Схематично диод можно представить в виде кристалла состоящего из двух полупроводников (областей). Одна область кристалла обладает проводимостью p -типа, а другая — проводимостью n -типа.

Для проведения лабораторных испытаний нам необходимо. Ш Некоторые провода для подключения. Сборка схемы выполняется в соответствии со следующими шагами. Установка диодов и чипов на хлебной доске. Подключение различных проводов к интегральной схеме. И, наконец, положительная и отрицательная хлебная доска для генератора переменного напряжения.

Эти значения помогут нам провести кривую, указывая на прямую характеристику диода. Для выполнения первого измерения или для проверки характеристики прямого диода он начинает подавать напряжение 0, и напряжение постоянно увеличивается. Для каждого изменения напряжения регистрируется напряжение диода и ток диода, а полученные значения приведены на диаграмме.

На рисунке дырки , преобладающие в области p -типа, условно изображены красными кружками, а электроны , преобладающие в области n -типа — синими. Эти две области являются электродами диода анодом и катодом :

Анод – положительный электрод дырки .

Кривую, которую мы представляем, будем называть прямой диодной характеристикой. Анализируя прямые характеристики диода, отметим, что существует пороговое напряжение, то есть превышенное напряжение, которое увеличивает ток много и линейно; тогда как для значений ниже порогового напряжения ток равен нулю.

Теперь мы проанализируем обратную характеристику, инвертируя диод и создавая новую схему. Мы объясняем символику и различные компоненты схемы. Рельеф значений, считанных на мультиметрах. Использовали один в качестве амперметра. После правильной сборки схемы мы могли бы продолжить, указав значения, указанные вольтметром и амперметром, вернув их к столу.

Катод – отрицательный электрод диода, в котором основными носителями заряда являются электроны .

На внешние поверхности областей нанесены контактные металлические слои, к которым припаяны проволочные выводы электродов диода. Такой прибор может находиться только в одном из двух состояний:

1. Открытое – когда он хорошо проводит ток;
2. Закрытое – когда он плохо проводит ток.

Эти значения помогут нам провести кривую, указывая на обратную характеристику диода. Чтобы выполнить поясничную меру или одну, чтобы проверить обратную характеристику диода, он начинает давать напряжение 0, и напряжение постоянно возрастает. Кривая, которую мы будем представлять, называется обратной характеристикой диода.

Этот очень малый ток называется обратным током насыщения и остается практически постоянным до точки разлома. На графике видно, что диод превысил определенное напряжение. Эта точка называется точкой останова. По-английски это называется сломать. Из графиков мы видели, что поведение диода напрямую связано с поляризацией, если оно поляризовано обратно.

Прямое включение диода. Прямой ток.

Если к электродам диода подключить источник постоянного напряжения: на вывод анода «плюс » а на вывод катода «минус », то диод окажется в открытом состоянии и через него потечет ток, величина которого будет зависеть от приложенного напряжения и свойств диода.

Затем мы можем нарисовать график, показывающий как характеристики диода. График, представляющий прямую и обратную характеристику диода, был получен путем объединения двух ранее полученных графиков со значением собранных значений схемы. Поэтому мы можем сказать, что установленная схема работает и что диод ответил на все ранее изученные понятия, поэтому мы можем сказать, что тест прошел успешно.

Диод Биполярный, нелинейный полупроводниковый элемент схемы, который имеет характерный асимметричный ток напряжения и сильно однонаправленную проводимость. В частности, они используются в цепях выпрямителя, в которых переменное напряжение преобразуется в напряжение со средним значением, отличным от нуля. Эта структура определяет формирование несущей области, называемой дренажной областью, где расположен потенциальный барьер, который предотвращает перемещение носителей большинства и допускает носителей меньшинства.

При такой полярности подключения электроны из области n -типа устремятся навстречу дыркам в область p -типа, а дырки из области p -типа двинутся навстречу электронам в область n -типа. На границе раздела областей, называемой электронно-дырочным или p-n переходом , они встретятся, где происходит их взаимное поглощение или рекомбинация .

Например. Oсновные носители заряда в области n -типа электроны, преодолевая p-n переход попадают в дырочную область p -типа, в которой они становятся неосновными . Ставшие неосновными, электроны будут поглощаться основными носителями в дырочной области – дырками . Таким же образом дырки, попадая в электронную область n -типа становятся неосновными носителями заряда в этой области, и будут также поглощаться основными носителями – электронами .

Контакт диода, соединенный с отрицательным полюсом источника постоянного напряжения будет отдавать области n -типа практически неограниченное количество электронов, пополняя убывание электронов в этой области. А контакт, соединенный с положительным полюсом источника напряжения, способен принять из области p -типа такое же количество электронов, благодаря чему восстанавливается концентрация дырок в области p -типа. Таким образом, проводимость p-n перехода станет большой и сопротивление току будет мало , а значит, через диод будет течь ток, называемый прямым током диода Iпр .

Обратное включение диода. Обратный ток.

Поменяем полярность источника постоянного напряжения – диод окажется в закрытом состоянии.

В этом случае электроны в области n -типа станут перемещаться к положительному полюсу источника питания, отдаляясь от p-n перехода, и дырки, в области p -типа, также будут отдаляться от p-n перехода, перемещаясь к отрицательному полюсу источника питания. В результате граница областей как бы расширится, отчего образуется зона обедненная дырками и электронами, которая будет оказывать току большое сопротивление.

Но, так как в каждой из областей диода присутствуют неосновные носители заряда, то небольшой обмен электронами и дырками между областями происходить все же будет. Поэтому через диод будет протекать ток во много раз меньший, чем прямой, и такой ток называют обратным током диода (Iобр ). Как правило, на практике, обратным током p-n перехода пренебрегают, и отсюда получается вывод, что p-n переход обладает только односторонней проводимостью .

Прямое и обратное напряжение диода.

Напряжение, при котором диод открывается и через него идет прямой ток называют прямым (Uпр), а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток называют обратным (Uобр).

При прямом напряжении (Uпр ) сопротивление диода не превышает и нескольких десятков Ом, зато при обратном напряжении (Uобр ) сопротивление возрастает до нескольких десятков, сотен и даже тысяч килоом. В этом не трудно убедиться, если измерить обратное сопротивление диода омметром.

Сопротивление p-n перехода диода величина не постоянная и зависит от прямого напряжения (Uпр ), которое подается на диод. Чем больше это напряжение, тем меньшее сопротивление оказывает p-n переход, тем больший прямой ток Iпр течет через диод. В закрытом состоянии на диоде падает практически все напряжение, следовательно, обратный ток, проходящий через него мал , а сопротивление p-n перехода велико .

Например. Если включить диод в цепь переменного тока, то он будет открываться при положительных полупериодах на аноде, свободно пропуская прямой ток (Iпр), и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления – обратный ток (Iобр). Эти свойства диодов используют для преобразования переменного тока в постоянный , и такие диоды называют выпрямительными .

Вольт-амперная характеристика полупроводникового диода.

Зависимость тока, проходящего через p-n переход, от величины и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт-амперной характеристикой диода .

На графике ниже изображена такая кривая. По вертикальной оси в верхней части обозначены значения прямого тока (Iпр ), а в нижней части — обратного тока (Iобр ).
По горизонтальной оси в правой части обозначены значения прямого напряжения Uпр , а в левой части – обратного напряжения (Uобр ).

Вольт-амперная характеристика состоит как бы из двух ветвей: прямая ветвь , в правой верхней части, соответствует прямому (пропускному) току через диод, и обратная ветвь , в левой нижней части, соответствующая обратному (закрытому) току через диод.

Прямая ветвь идет круто вверх, прижимаясь к вертикальной оси, и характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения.
Обратная ветвь идет почти параллельно горизонтальной оси и характеризует медленный рост обратного тока. Чем круче к вертикальной оси прямая ветвь и чем ближе к горизонтальной обратная ветвь, тем лучше выпрямительные свойства диода. Наличие небольшого обратного тока является недостатком диодов . Из кривой вольт-амперной характеристики видно, что прямой ток диода (Iпр ) в сотни раз больше обратного тока (Iобр ).

При увеличении прямого напряжения через p-n переход ток вначале возрастает медленно, а затем начинается участок быстрого нарастания тока. Это объясняется тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1 – 0,2В, а кремниевый при 0,5 – 0,6В.

Например. При прямом напряжении Uпр = 0,5В прямой ток Iпр равен 50mA (точка «а » на графике), а уже при напряжении Uпр = 1В ток возрастает до 150mA (точка «б » на графике).

Но такое увеличение тока приводит к нагреванию молекулы полупроводника. И если количество выделяемого тепла будет больше отводимого от кристалла естественным путем, либо с помощью специальных устройств охлаждения (радиаторы ), то в молекуле проводника могут произойти необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n перехода ограничивают на уровне, исключающем перегрев полупроводниковой структуры. Для этого используют ограничительный резистор, включенный последовательно с диодом.

У полупроводниковых диодов величина прямого напряжения Uпр при всех значениях рабочих токов не превышает:
для германиевых — 1В;
для кремниевых — 1,5В.

При увеличении обратного напряжения (Uобр ), приложенного к p-n переходу, ток увеличивается незначительно, о чем говорит обратная ветвь вольтамперной характеристики.
Например. Возьмем диод с параметрами: Uобр max = 100В, Iобр max = 0,5 mA, где:

Uобр max – максимальное постоянное обратное напряжение, В;
Iобр max – максимальный обратный ток, мкА.

При постепенном увеличении обратного напряжения до значения 100В видно, как незначительно растет обратный ток (точка «в » на графике). Но при дальнейшем увеличении напряжения, свыше максимального, на которое рассчитан p-n переход диода, происходит резкое увеличение обратного тока (пунктирная линия), нагрев кристалла полупроводника и, как следствие, наступает пробой p-n перехода.

Пробои p-n перехода.

Пробоем p-n перехода называется явление резкого увеличения обратного тока при достижении обратным напряжением определенного критического значения. Различают электрический и тепловой пробои p-n перехода. В свою очередь, электрический пробой разделяется на туннельный и лавинный пробои.

Электрический пробой.

Электрический пробой возникает в результате воздействия сильного электрического поля в p-n переходе. Такой пробой является обратимый , то есть он не приводит к повреждению перехода, и при снижении обратного напряжения свойства диода сохраняются. Например. В таком режиме работают стабилитроны – диоды, предназначенные для стабилизации напряжения.

Туннельный пробой.

Туннельный пробой происходит в результате явления туннельного эффекта , который проявляется в том, что при сильной напряженности электрического поля, действующего в p-n переходе малой толщины , некоторые электроны проникают (просачиваются) через переход из области p -типа в область n -типа без изменения своей энергии. Тонкие p-n переходы возможны только при высокой концентрации примесей в молекуле полупроводника.

В зависимости от мощности и назначения диода толщина электронно-дырочного перехода может находиться в пределах от 100 нм (нанометров) до 1 мкм (микрометр).

Для туннельного пробоя характерен резкий рост обратного тока при незначительном обратном напряжении – обычно несколько вольт. На основе этого эффекта работают туннельные диоды .

Благодаря своим свойствам туннельные диоды используются в усилителях, генераторах синусоидальных релаксационных колебаний и переключающих устройствах на частотах до сотен и тысяч мегагерц.

Лавинный пробой.

Лавинный пробой заключается в том, что под действием сильного электрического поля неосновные носители зарядов под действием тепла в p-n переходе ускоряются на столько, что способны выбить из атома один из его валентных электронов и перебросить его в зону проводимости, образовав при этом пару электрон — дырка . Образовавшиеся носители зарядов тоже начнут разгоняться и сталкиваться с другими атомами, образуя следующие пары электрон – дырка. Процесс приобретает лавинообразный характер, что приводит к резкому увеличению обратного тока при практически неизменном напряжении.

Диоды, в которых используется эффект лавинного пробоя используются в мощных выпрямительных агрегатах , применяемых в металлургической и химической промышленности, железнодорожном транспорте и в других электротехнических изделиях, в которых может возникнуть обратное напряжение выше допустимого.

Тепловой пробой.

Тепловой пробой возникает в результате перегрева p-n перехода в момент протекания через него тока большого значения и при недостаточном теплоотводе, не обеспечивающем устойчивость теплового режима перехода.

При увеличении приложенного к p-n переходу обратного напряжения (Uобр ) рассеиваемая мощность на переходе растет . Это приводит к увеличению температуры перехода и соседних с ним областей полупроводника, усиливаются колебания атомов кристалла, и ослабевает связь валентных электронов с ними. Возникает вероятность перехода электронов в зону проводимости и образования дополнительных пар электрон — дырка. При плохих условиях теплоотдачи от p-n перехода происходит лавинообразное нарастание температуры, что приводит к разрушению перехода.

На этом давайте закончим, а в части рассмотрим устройство и работу выпрямительных диодов, диодного моста.
Удачи!

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Идеология народничества лавров ткачев бакунин Идеология народничества лавров ткачев бакунин "Пятая колонна" (о происхождении термина) Пятая колонка Церковь Св. Екатерины. Храм великомученицы екатерины на всполье Храм великомученицы екатерины на всполье расписание богослужений Церковь Св. Екатерины. Храм великомученицы екатерины на всполье Храм великомученицы екатерины на всполье расписание богослужений