Принципы теории упругости. Общие сведения о теории упругости. Основные понятия теории упругости

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Основная задача теории упругости - определение напряженно-деформированного состояния по заданным условиям нагружения и закрепления тела.

Напряженно-деформированное состояние определено, если найдены компоненты тензора напряжений {} и вектора перемещений, девять функций.

Основные уравнения теории упругости

Для того, чтобы найти эти девять функций надо записать основные уравнения теории упругости, или:

Дифференциальные Коши

где - компоненты тензора линейной части деформаций Коши;

Компоненты тензора производной перемещения по радиусу.

Дифференциальные уравнения равновесия

где - компоненты тензора напряжений; - проекция объемной силы на ось j.

Закон Гука для линейно-упругого изотропного тела

где - константы Ламе; для изотропного тела. Здесь - нормальные и касательные напряжения; деформации и углы сдвига соответственно.

Вышеперечисленные уравнения должны удовлетворять зависимостям Сен-Венана

В теории упругости задача решена, если выполняются все основные уравнения.

Типы задач теории упругости

Граничные условия на поверхности тела должны выполняться и в зависимости от типа граничных условий различают три типа задач теории упругости.

Первый тип. На поверхности тела заданы силы. Граничные условия

Второй тип. Задачи, в которых на поверхности тела задано перемещение. Граничные условия

Третий тип. Смешанные задачи теории упругости. На части поверхности тела заданы силы, на части поверхности тела задано перемещение. Граничные условия

Прямая и обратная задачи теории упругости

Задачи, в которых на поверхности тела заданы силы или перемещения, а требуется найти напряженно-деформированное состояние внутри тела и то, что не задано на поверхности, называют прямыми задачами. Если же внутри тела заданы напряжения, деформации, перемещения и т.д., а требуется определить то, что не задано внутри тела, а также перемещения и напряжения на поверхности тела (то есть найти причины, вызвавшие такое напряженно-деформированное состояние)), то такие задачи называются обратными.

Уравнения теории упругости в перемещениях (уравнения Ламе)

Для определения уравнений теории упругости в перемещениях запишем: дифференциальные уравнения равновесия (18) закон Гука для линейно-упругого изотропного тела (19)

Если учесть, что деформации выражаются через перемещения (17), запишем:

Следует также напомнить, что угол сдвига связан с перемещениями следующим соотношением (17):

Подставив в первое уравнение равенств (19) выражение (22), получим, что нормальные напряжения

Отметим, что запись иц в данном случае не подразумевает суммирования по i.

Подставив во второе уравнение равенств (19) выражение (23), получим, что касательные напряжения

Запишем уравнения равновесия (18) в развернутом виде для j = 1

Подставив в уравнение (26) выражения для нормальных (24) и касательных (25) напряжений, получим

где л- константа Ламе, которая определяется по выражению:

Подставим выражение (28) в уравнение (27) и запишем,

где определяется по выражению (22), или в развернутом виде

Разделим выражение (29) на G и приведем подобные слагаемые и получим первое уравнение Ламе:

где - оператор Лапласа (гармонический оператор), который определятся как

Аналогично можно получить:

Уравнения (30) и (32) можно записать в следующем виде:

Уравнения (33) или (30) и (32) являются уравнениями Ламе. Если объемные силы равны нулю или постоянны, то

причем запись в данном случае не подразумевает суммирования по i. Здесь

или, с учетом (31)

Подставив (22) в (34) и проведя преобразования, получим

а, следовательно

где - функция, удовлетворяющая данному равенству. Если

следовательно, f - функция гармоническая. Значит и объемная деформация также функция гармоническая.

Считая верным предыдущее предположение, возьмем гармонический оператор от i -ой строчки уравнения Ламе

Если объемные силы равны нулю или постоянны, то компоненты перемещения есть бигармонические функции.

Известны различные формы представления бигармонических функций через гармонические (удовлетворяющие уравнениям Ламе).

где k = 1,2,3. Причем

Можно показать, что такое представление перемещений через гармоническую функцию обращает в тождество уравнения Ламе (33). Часто их называют условиями Попковича-Гродского. Четыре гармонические функции не обязательны, ведь ф0 можно приравнять нулю.

ТЕОРИЯ УПРУГОСТИ – раздел механики сплошных сред, изучающий перемещения, деформации и напряжения покоящихся или движущихся тел под действием нагрузок. Цель этой теории – вывод математических уравнений, решение которых позволяет ответить на следующие вопросы: каковы будут деформации данного конкретного тела, если к нему приложить в известных местах нагрузки заданной величины? Каковы будут при этом напряжения в теле? Вопрос в том, разрушится ли тело или выдержит эти нагрузки, тесно связан с теорией упругости, но, строго говоря, не входит в компетенцию этой теории.

Количество возможных примеров безгранично – от определения деформаций и напряжений в балке, лежащей на опорах и нагруженной силами, до расчета тех же величин в конструкции самолета, корабля, подводной лодки, в колесе вагона, в броне при ударе снаряда, в горном массиве при прохождении штольни, в каркасе высотного здания и т.д. Здесь нужно сделать оговорку: конструкции, состоящие из тонкостенных элементов, рассчитывают по упрощенным теориям, логически основанным на теории упругости; к таким теориям относятся: теория сопротивления материалов действию нагрузок (знаменитый «сопромат»), задачей которой, в основном, является расчет стержней и балок; строительная механика – расчет стержневых систем (например, мостов); и, наконец, теория оболочек – по существу, самостоятельная и очень сильно развитая область науки о деформациях и напряжениях, предмет исследования которой – важнейшие элементы конструкций – тонкостенные оболочки – цилиндрические, конические, сфероидальные, и имеющие более сложные формы. Поэтому в теории упругости обычно рассматриваются тела, у которых существенные размеры отличаются не слишком сильно. Таким образом, рассматривается упругое тело заданной формы, на которое действуют известные силы.

Основными понятиями теории упругости являются напряжения, действующие на малых площадках, которые можно мысленно провести в теле через заданную точку M , деформации малой окрестности точки M и перемещения самой точки M . Точнее говоря, вводятся тензоры напряжений s ij , тензор малых деформаций e ij и вектор перемещения u i .

Краткое обозначение s ij , где индексы i , j принимают значения 1, 2, 3 следует понимать как матрицу вида:

Аналогично следует понимать и краткое обозначение тензора e ij .

Если физическая точка тела M вследствие деформации заняла новое положение в пространстве , то вектор перемещения есть вектор с компонентами (u x u y u z ), или, сокращенно, u i . В теории малых деформаций компоненты u i и e i считаются малыми величинами (строго говоря, бесконечно малыми). Компоненты тензора e ij и вектора u ij связаны формулами Коши, которые имеют вид:

Видно, что e xy = e yx , и, вообще говоря, e ij = e ji , поэтому тензор деформаций является симметричным по определению.

Если упругое тело под действием внешних сил находится в равновесии (т.е. скорости всех его точек равны нулю), то в равновесии находится и любая часть тела, которую можно мысленно из него выделить. Из тела выделяется маленький (строго говоря, бесконечно малый) прямоугольный параллелепипед, грани которого параллельны координатным плоскостям декартовой системы Oxyz (рис. 1).

Пусть ребра параллелепипеда имеют длины dx , dy , dz соответственно (здесь, как обычно dx есть дифференциал x , и т.д.). Согласно теории напряжений, на гранях параллелепипеда действуют компоненты тензора напряжений, которые обозначаются:

на грани OADG : s xx , s xy , s xz

на грани OABC : s yx , s yy , s yz

на грани DABE : s zx , s zy , s zz

при этом компоненты с одинаковыми индексами (например s xx ) действуют перпендикулярно грани, а с разными индексами – в плоскости площадки.

На противоположных гранях значения одноименных компонент тензора напряжений немного отличаются, это связано с тем, что они являются функциями координат и изменяются от точки к точке (всегда, кроме известных простейших случаев), а малость изменения связана с малыми размерами параллелепипеда, поэтому можно считать, что если на грани OABC действует напряжение s yy , то на грани GDEF действует напряжение s yy +ds yy , причем малая величина ds yy именно в силу своей малости может быть определена с помощью разложения в ряд Тейлора:

(здесь используются частные производные, т.к. компоненты тензора напряжений зависят от x , y , z ).

Аналогично можно выразить напряжения на всех гранях через s ij и ds ij . Далее, чтобы перейти от напряжений к силам, нужно умножить величину напряжения на площадь той площадки, на которой оно действует (например, s yy + ds yy умножить на dx dz ). Когда все силы, действующие на параллелепипед, определены, можно, как это делают в статике, записать уравнение равновесия тела, при этом во всех уравнениях для главного вектора останутся только члены с производными, так как сами напряжения взаимно уничтожаются, а множители dx dy dz сокращаются и в результате

Аналогично получаются уравнения равновесия, выражающие равенство нулю главного момента всех сил, действующих на параллелепипед, которые приводятся к виду:

Эти равенства означают, что тензор напряжений есть симметричный тензор. Таким образом, для 6 неизвестных компонент s ij есть три уравнения равновесия, т.е. уравнений статики недостаточно для решения задачи. Выход из положения состоит в том, чтобы выразить напряжения s ij через деформации e ij с помощью уравнений закона Гука , а затем деформации e ij выразить через перемещения u i с помощью формул Коши, и результат подставить в уравнения равновесия. При этом получается три дифференциальных уравнения равновесия относительно трех неизвестных функций u x u y u z , т.е. число неизвестных равно числу уравнений. Эти уравнения называются уравнениями Ламе

не учитываются массовые силы (вес и др.)

D – оператор Лапласа , то есть

Теперь нужно задать на поверхности тела граничные условия;

основные виды этих условий следующие:

1. На известной части поверхности тела S 1 заданы перемещения, т.е. вектор перемещений равен известному вектору с компонентами { f x ; f y ; f z }:

u x = f (xyz )

u y = f (xyz)

u z = f (xyz )

(f x , f y , f z – известные функции координат)

2. На остальной части поверхности S 2 заданы поверхностные силы. Это означает, что распределение напряжений внутри тела таково, что величины напряжений в непосредственной близости от поверхности, а в пределе – на поверхности на каждой элементарной площадке создают вектор напряжений, равный известному вектору внешней нагрузки с компонентами { F x ;F y ; F z } поверхностных сил. Математически это записывается так: если в точке A поверхности вектор единичной нормали к этой поверхности имеет компоненты n x , n y , n z то в этой точке должны быть выполнены равенства относительно (неизвестных) компонент s ij : e ij , то для трех неизвестных получим шесть уравнений, то есть переопределенную систему. Эта система будет иметь решение только при выполнении дополнительных условий относительно e ij . Эти условия и есть уравнения совместности.

Эти уравнения часто называют условиями сплошности, подразумевая при этом, что они обеспечивают сплошность тела после деформации. Это выражение образное, но неточное: эти условия обеспечивают существование непрерывного поля перемещений, если в качестве неизвестных принять компоненты деформаций (или напряжений). Невыполнение этих условий ведет не к нарушению сплошности, а к отсутствию решения задачи.

Таким образом, теория упругости дает дифференциальные уравнения и граничные условия, которые позволяют сформулировать краевые задачи, решение которых дает полную информацию о распределении в рассматриваемых телах напряжений, деформаций и перемещений. Методы решения таких задач весьма сложны и наилучшие результаты дает сочетание аналитических методов с численными, использующими мощные компьютеры.

Владимир Кузнецов

Осесимметричные задачи теории упругости (лекции)

Роль расчетов на прочность и жесткость в современном машиностроении становится все более ответственной, а сами расчеты – все более сложными. Решение большинства возникающих при этом задач доступно лишь высококвалифицированным специалистам.

Вопросы, связанные с расчетами элементов конструкций, рассматриваются в таких традиционных дисциплинах как "Сопротивление материалов", "Строительная механика", "Теория упругости", в разных сочетаниях и объемах представленных в учебных программах механических специальностей вузов. Соответствующие материалы разбросаны по многочисленным литературным источникам и очень перегружены теоретической частью, изложенной на уровне читателя с высокой математической подготовкой. В них часто не подчеркивается методическая основа решения задач, а также не проводится достаточного количества примеров из расчетной инженерной практики.

Одной из целей настоящего курса лекций является компактное изложение основ математической линейной теории упругости с акцентом на ее методы, используемые в практических приложениях. Другая цель – показать на конкретных примерах элементов машин (толстостенные трубы, пластины, оболочки), как реализуется математический аппарат этой теории при изучении расчетных формул и как последние используются в конкретных примерах. Сделано это в статической упругой постановке для наиболее распространенного класса осесимметрических задач, наиболее простых по влиянию на этот аппарат геометрии и характера нагружения исследуемых объектов.

Знакомство с данным курсом существенно облегчит дальнейшее изучение методов проектирования и расчета сложных машин и сооружений, которыми изобилует современная техника. Эти методы в настоящее время стремятся отразить такие особенности расчетов элементов конструкций как нестационарный температурный режим, переменные параметры упругости, возможную слоистую или армированною структуру, пластические деформации и деформации ползучести, причем при возможно более полном учете параметров как движения, так и геометрии исследуемых объектов. В большинстве случаев это осуществляется лишь с привлечением современных численных методов с последующей реализацией их на ЭВМ.

Разделы

Основное содержание

Основы теории упругости

Основные положения, допущения и обозначения.

Уравнения равновесия элементарного параллепипеда и элементарного тетраэдра.

Нормальные и касательные напряжения по наклонной площадке.

Определение главных напряжений и наибольших касательных напряжений в точке.

Напряжения по октаэдрическим площадкам.

Понятие о перемещениях. Зависимости между деформациями и перемещениями.

Относительная линейная деформация в произвольном направлении.

Уравнения совместимости деформаций.

Закон Гука для тела.

Плоская задача в прямоугольных координатах.

Плоская задача в полярных координатах.

Возможные решения задач теории упругости.

Решение задач в перемещениях.

Решение задач в напряжениях.

Случай температурного поля.

Простейшие осесимметричные задачи

Уравнения в цилиндрических координатах.

Деформация толстостенного сферического сосуда.

Сосредоточенная сила, действующая на плоскость.

Частные случаи загрузки упругого полупространства.

Вдавливание абсолютно жесткого шара в упругое полупространство.

Задача об упругом смятии шаров.

Толстостенные трубы

Общие сведения. Уравнение равновесия элемента трубы.

Исследование напряжений при давлении на одном из контуров.

Условия прочности при упругой деформации.

Напряжения в составных трубах.

Понятие о расчете многослойных труб.

Примеры.

Пластины, мембраны

Основные определения и допущения.

Дифференциальные уравнения изогнутой срединной поверхности пластины в прямоугольных координатах.

Цилиндрический и сферический изгиб пластины.

Изгибающие моменты при осесимметричном изгибе круглой пластины.

Дифференциальное уравнение изогнутой срединной поверхности круглой пластины.

Граничные условия. Наибольшие напряжения и прогибы. Условия прочности.

Температурные напряжения в пластинах.

Определение усилий в мембранах. Цепные усилия и напряжения.

Приближенное определение прогиба и напряжений в круглой мембране.

Примеры.

Оболочки

Общие сведения об оболочках.

Понятия о расчете оболочки произвольной формы.

Оболочка вращения, нагруженная нормальным давлением.

Изгиб цилиндрической круговой оболочки.

Определение усилий и перемещений в длинной цилиндрической оболочке.

Длинная цилиндрическая оболочка, подкрепленная кольцами.

Местные напряжения в сопряжении оболочек.

В главах 4-6 были выведены основные уравнения теории упругости, устанавливающие законы изменения напряжений и деформаций в окрестности произвольной точки тела, а также соотношения, связывающие напряжения с деформациями и деформации с перемещениями. Приведем полную систему уравнений теории упругости в декартовых координатах.

Уравнения равновесия Навье:

Соотношения Коши:


Закон Гука (в прямой и обратной формах):


Напомним, что здесь е = е х + е у + e z - относительная объемная деформация, а по закону парности касательных напряжений Xj. = Tj; и соответственно у~ = ^ 7 . Входящие в (16.3, а) постоянные Ляме определяются по формулам (6.13).

Из приведенной системы видно, что она включает 15 дифференциальных и алгебраических уравнений, содержащих 15 неизвестных функций (6 компонент тензора напряжений, 6 компонент тензора деформаций и 3 компоненты вектора перемещения).

В силу сложности полной системы уравнений нельзя найти общее решение, которое было бы справедливо для всех задач теории упругости, встречающихся на практике.

Существуют различные способы уменьшения количества уравнений, если в качестве неизвестных функций принять, например, только напряжения или перемещения.

Если, решая задачу теории упругости, исключить из рассмотрения перемещения, то вместо соотношений Коши (16.2) можно получить уравнения, связывающие между собой компоненты тензора деформаций. Продифференцируем деформацию г х, определяемую первым равенством (16.2), два раза по у, деформацию г у - два раза по х и сложим полученные выражения. В результате получим

Выражение, стоящее в скобках, согласно (16.2) определяет угловую деформацию у. Таким образом, последнее равенство можно записать в виде

Аналогично можно получить еще два равенства, которые вместе с последним соотношением составляют первую группу уравнений совместности деформаций Сен-Венана:

Каждое из равенств (16.4) устанавливает связь между деформациями в одной плоскости. Из соотношений Коши могут быть также получены условия совместности, связывающие деформации в разных плоскостях. Продифференцируем выражения (16.2) для угловых деформаций следующим образом: у - по z у - по х;

По у; сложим два первых равенства и вычтем третье. В результате получим


Дифференцируя это равенство по у и учитывая, что,

приходим к следующему соотношению:

С помощью круговой подстановки получим еще два равенства, которые вместе с последним соотношением составляют вторую группу уравнений совместности деформаций Сен-Венана:

Уравнения совместности деформаций называются также условиями сплошности или неразрывности. Эти термины характеризуют тот факт, что при деформировании тело остается сплошным. Если представить тело состоящим из отдельных элементов и принять деформации е х, у в виде произвольных функций, то в деформированном состоянии из этих элементов не удастся сложить сплошное тело. При выполнении условий (16.4), (16.5) перемещения границ отдельных элементов будут таковы, что тело и в деформированном состоянии останется сплошным.

Таким образом, одним из способов сокращения количества неизвестных при решении задач теории упругости является исключение из рассмотрения перемещений. Тогда вместо соотношений Коши в полную систему уравнений будут входить уравнения совместности деформаций Сен-Венана.

Рассматривая полную систему уравнений теории упругости, следует обратить внимание на то, что она практически не содержит факторов, определяющих напряженно-деформированное состояние тела. К таким факторам относятся форма и размеры тела, способы его закрепления, действующие на тело нагрузки, за исключением объемных сил X, Y, Z.

Таким образом, полная система уравнений теории упругости устанавливает лишь общие закономерности изменения напряжений, деформаций и перемещений в упругих телах. Решение же конкретной задачи может быть получено, если заданы условия нагружения тела. Это дается в граничных условиях, которые и отличают одну задачу теории упругости от другой.

С математической точки зрения также понятно, что общее решение системы дифференциальных уравнений включает в себя произвольные функции и постоянные, которые и должны быть определены из граничных условий.

Оглавление 4
От редактора перевода 10
Предисловие к третьему изданию 13
Предисловие ко второму изданию 15
Предисловие к первому изданию 16
Обозначения 20
Глава 1. Введение 22
§ 1. Упругость 22
§ 2. Напряжения 23
§ 3. Обозначения для сил и напряжений 24
§ 4. Компоненты напряжений 25
§ 5. Компоненты деформаций 26
§ 6. Закон Гука 28
§ 7. Индексные обозначения 32
Задачи 34
Глава 2. Плоское напряженное состояние и плоская деформация 35
§ 8. Плоское напряженное состояли 35
§ 9. Плоская деформация 35
§ 10. Напряжения в точке 37
§ 11. Деформации в точке 42
§ 12. Измерение поверхностных деформаций 44
§ 13. Построение круга деформаций Мора для розетки 46
§ 14. Дифференциальные уравнения равновесия 46
§ 15. Граничные условия 47
§ 16. Уравнения совместности 48
§ 17. Функция напряжений 50
Задачи 52
Глава 3. Двумерные задачи в прямоугольных координатах 54
§ 18. Решение в полиномах 54
§ 19. Концевые эффекты. Принцип Сен-Венана 58
§ 20. Определение перемещений 59
§ 21. Изгиб консоли, нагруженной на конце 60
§ 22. Изгиб балки равномерной нагрузкой 64
§ 23. Другие случаи балок с непрерывным распределением нагрузки 69
§ 24. Решение двумерной задачи при помощи рядов Фурье 71
§ 25. Другие приложения рядов Фурье. Нагрузка от собственного веса 77
§ 26. Влияние кондов. Собственные функции 78
Задачи 80
Глава 4. Двумерные задачи в полярных координатах 83
§ 27. Общие уравнения в полярных координатах 83
§ 28. Полярно-симметричное распределение напряжений 86
§ 29. Чистый изгиб кривых брусьев 89
§ 30. Компоненты деформаций в полярных координатах 93
§ 31. Перемещения при симметричных нолях напряжений 94
§ 32. Вращающиеся диски 97
§ 33. Изгиб кривого бруса силой, приложенной на конце 100
§ 34. Краевые дислокации 105
§ 35. Влияние круглого отверстия на распределение напряжений в пластинке 106
§ 36. Сосредоточенная сила, приложенная в некоторой точке прямолинейной границы 113
§ 37. Произвольная вертикальная нагрузка на прямолинейной границе 119
§ 38. Сила, действующая на острие клина 125
§ 39. Изгибающий момент, действующий на острие клина 127
§ 40. Действие на балку сосредоточенной силы 128
§ 41. Напряжения в круглом диске 137
§ 42. Сила, действующая в точке бесконечной пластинки 141
§ 43. Обобщенное решение двумерной задачи в полярных координатах 146
§ 44. Приложения обобщенного решения в полярных координатах 150
§ 45. Клин, нагруженный вдоль граней 153
§ 46. Собственные решения для клиньев и вырезов 155
Задачи 158
Глава 5. Экспериментальные методы. Метод фотоупругости и метод «муара» 163
§ 47. Экспериментальные методы и проверка теоретических решений 163
§ 48. Измерение напряжений фотоупругим методом 163
§ 49. Круговой полярископ 169
§ 50. Примеры определения напряжений фотоупругим методом 171
§ 51. Определение главных напряжений 174
§ 52. Методы фотоупругости в трехмерном случае 175
§ 53. Метод муара 177
Глава 6. Двумерные задачи в криволинейных координатах 180
§ 54. Функции комплексного переменного 180
§ 55. Аналитические функции и уравнение Лапласа 182
§ 56. Функции напряжений, выраженные через гармонические и комплексные функции 184
§ 57. Перемещения, отвечающие заданной функции напряжений 186
§ 58. Выражение напряжений и перемещений через комплексные потенциалы 188
§ 59. Результирующая напряжений, действующих по некоторой кривой. Граничные условия 190
§ 60. Криволинейные координаты 193
§ 61. Компоненты напряжений в криволинейных координатах 196
Задачи 198
§ 62. Решения в эллиптических координатах. Эллиптическое отверстие в пластинке с однородным напряженным состоянием 198
§ 63. Эллиптическое отверстие в пластинке, подвергнутой одноосному растяжению 202
§ 64. Гиперболические границы. Вырезы 206
§ 65. Биполярные координаты 208
§ 66. Решения в биполярных координатах 209
§ 67. Определение комплексных потенциалов по заданным граничным условиям. Методы Н. И. Мусхелишвили 214
§ 68 Формулы для комплексных потенциалов 217
§ 69. Свойства напряжений и деформаций, отвечающих комплексным потенциалам, аналитическим в области материала, расположенной вокруг отверстия 219
§ 70. Теоремы для граничных интегралов 221
§ 71. Отображающая функция ω(ξ)для эллиптического отверстия. Второй граничный интеграл 224
§ 72. Эллиптическое отверстие. Формула для ψ(ζ) 225
§ 73. Эллиптическое отверстие. Частные задачи 226
Задачи 229
Глава 7. Анализ напряжений и деформаций в пространственном случае 230
§ 74. Введение 230
§ 75. Главные напряжения 232
§ 76. Эллипсоид напряжений и направляющая поверхность напряжений 233
§ 77. Определение главных напряжений 234
§ 78. Инварианты напряжений 235
§ 79. Определение максимального касательного напряжения 236
§ 80. Однородная деформация 238
§ 81. Деформации в точке тела 239
§ 82. Главные оси деформаций 242
§ 83. Вращение 243
Задачи 245
Глава 8. Общие теоремы 246
§ 84. Дифференциальные уравнения равновесия 246
§ 85. Условия совместности 247
§ 86. Определение перемещений 250
§ 87. Уравнения равновесия в перемещениях 251
§ 88. Общее решение для перемещений 252
§ 89. Принцип суперпозиции 253
§ 90. Энергия деформации 254
§ 91. Энергия деформации для краевой дислокации 259
§ 92. Принцип виртуальной работы 261
§ 93. Теорема Кастильяно 266
§ 94. Приложения принципа минимальной работы. Прямоугольные пластинки 270
§ 95. Эффективная ширина широких полок балок 273
Задачи 279
§ 96. Единственность решения 280
§ 97. Теорема взаимности 282
§ 98. Приближенный характер решений для плоского напряженного состояния 285
Задачи 287
Глава 9. Элементарные трехмерные задачи теории упругости 289
§ 99. Однородное напряженное состояние 289
§ 100. Растяжение призматического стержня под действием собственного веса 290
§ 101. Кручение круглых валов постоянного поперечного сечения 293
§ 102. Чистый изгиб призматических стержней 294
§ 103. Чистый изгиб пластинок 298
Глава 10. Кручение 300
§ 104. Кручение прямолинейных стержней 300
§ 105. Эллиптическое поперечное сечение 305
§ 106. Другие элементарные решения 307
§ 107. Мембранная аналогия 310
§ 108. Кручение стержня узкого прямоугольного поперечного сечения 314
§ 109. Кручение прямоугольных стержней 317
§ 110. Дополнительные результаты 320
§ 111. Решение задач о кручении энергетическим методом 323
§ 112. Кручение стержней прокатных профилей 329
§ 113. Экспериментальные аналогии 331
§ 114. Гидродинамические аналогии 332
§ 115. Кручение полых валов 335
§ 116. Кручение тонкостенных труб 339
§ 117. Винтовые дислокации 343
§ 118. Кручение стержня, одно из поперечных сечений которого остается плоским 345
§ 119. Кручение круглых валов переменного диаметра 347
Задачи 355
Глава 11. Изгиб брусьев 359
§ 120. Изгиб консоли 359
§ 121. Функция напряжений 361
§ 122. Круглое поперечное сечение 363
§ 123. Эллиптическое поперечное сечение 364
§ 124. Прямоугольное поперечное сечение 365
§ 125. Дополнительные результаты 371
§ 126. Несимметричные поперечные сечения 373
§ 127. Центр изгиба 375
§ 128. Решение задач изгиба с помощью метода мыльной пленки 378
§ 129. Перемещения 381
§ 130. Дальнейшие исследования изгиба брусьев 382
Глава 12. Осесимметричные напряжения и деформации в телах вращения 384
§ 131. Общие уравнения 384
§ 132. Решение в полиномах 387
§ 133. Изгиб круглой пластинки 388
§ 134. Трехмерная задача о вращающемся диске 391
§ 135. Сила, приложенная в некоторой точке бесконечного тела 393
§ 136. Сферический сосуд под действием внутреннего или внешнего равномерного давления 396
§ 137. Местные напряжения вокруг сферической полости 399
§ 138. Сила, приложенная на границе полубесконечного тела 401
§ 139. Нагрузка, распределенная по части границы полубесконечного тела 405
§ 140. Давление между двумя соприкасающимися сферическими телами 412
§ 141. Давление между двумя соприкасающимися телами. Более общий случай 417
§ 142. Соударение шаров 422
§ 143. Симметричная деформация круглого цилиндра 424
§ 144. Круглый цилиндр под действием опоясывающего давления 428
§ 145. Решение Буссинеска в виде двух гармонических функций 430
§ 146. Растяжение винтовой пружины (винтовые дислокации в кольце) 431
§ 147. Чистый изгиб части круглого кольца 434
Глава 13. Температурные напряжения 436
§ 148. Простейшие случаи распределения температурных напряжений. Метод устранения деформаций 436
Задачи 442
§ 149. Продольное изменение температуры в полосе 442
§ 150. Тонкий круглый диск: распределение температуры, симметричное относительно центра 445
§ 151. Длинный круглый цилиндр 447
Задачи 455
§ 152. Сфера 455
§ 153. Общие уравнения 459
§ 154. Теорема взаимности в термоупругости 463
§ 155. Полные термоупругие деформации. Произвольное распределение температуры 464
§ 156. Термоупругие перемещения. Интегральное решение В. М. Май-зеля 466
Задачи 469
§ 157. Начальные напряжения 469
§ 158. Общее изменение объема, связанное с начальными напряжениями 472
§ 159. Плоская деформация и плоское напряженное состояние. Метод устранения деформаций 472
§ 160. Двумерные задачи со стационарным потоком тепла 474
§ 161. Плоское термонапряженное состояние, вызванное возмущением однородного потока тепла изолированным отверстием 480
§ 162. Решения общих уравнений. Термоупругий потенциал перемещения 481
§ 163. Общая двумерная задача для круговых областей 485
§ 164. Общая двумерная задача. Решение в комплексных потенциалах 487
Глава 14. Распространение волн в упругой сплошной среде 490
§ 165. Введение 490
§ 166. Волны расширения и волны искажения в изотропной упругой среде 491
§ 167. Плоские волны 492
§ 168. Продольные волны в стержнях постоянного сечения. Элементарная теория 497
§ 169. Продольное соударение стержней 502
§ 170. Поверхностные волны Рэлея 510
§ 171. Волны со сферической симметрией в бесконечной среде 513
§ 172. Взрывное давление в сферической полости 514
Приложение. Применение конечно-разностных уравнений в теории упругости 518
§ 1. Вывод конечно-разностных уравнений 518
§ 2. Методы последовательных приближений 522
§ 3. Метод релаксации 525
§ 4. Треугольные и шестиугольные сетки 530
§ 5. Блочная и групповая релаксации 535
§ 6. Кручение стержней с многосвязными поперечными сечениями 536
§ 7. Точки, расположенные вблизи границы 538
§ 8. Бигармоническое уравнение 540
§ 9. Кручение круговых валов переменного диаметра 548
§ 10. Решение задач с помощью ЭВМ 551
Именной указатель 553
Предметный указатель 558

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Блинчики из кукурузной муки Блины из кукурузной муки на воде Блинчики из кукурузной муки Блины из кукурузной муки на воде Как правильно приготовить курник из блинов Курник из блинов с курицей Как правильно приготовить курник из блинов Курник из блинов с курицей Эчпочмаки по-татарски и по-башкирски, пошаговые рецепты приготовления Эчпочмаки по-татарски и по-башкирски, пошаговые рецепты приготовления